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Preface

This dissertation explores several problems in the realm of low-rank matrix estimation. A primary focus is
on understanding the statistical and computational limitations. From a practical perspective, understanding
such limitations not only provides practitioners with guidance on algorithm selection, but also in some cases
spurs the development of cutting-edge methodologies which improve on the state of the art. Within this
theme, this dissertation explores and partially answers the following two questions: (1) Given a large-scale
low-rank matrix corrupted by random noise, how much information can we accurately infer from the limited
observations? (2) How do restrictions on computational resources affect information retrieval?

A secondary focus of this dissertation is on developing algorithms that sample from the posterior in the
context of low-rank matrix estimation. A standard machinery to fulfill this task is based on Markov Chain
Monte Carlo (MCMC) algorithms. However, rigorous guarantees are often difficult to obtain for MCMC
algorithms of common use. This dissertation contributes to this line of work from an alternative perspective:
We propose an alternative class of efficient algorithms based on diffusion processes that come with rigorous
guarantee.

This dissertation is organized as follows: We describe the problem in Chapter 1. Chapter 2 studies
low-rank matrix estimation from an information-theoretic perspective, and Chapter 3-4 analyzes the effects
of limited computational resource. In Chapter 5, we design a sampling algorithm that works well with the
low-rank model. Standalone versions of each chapter can be found in [154, 50, 155, 156].
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Chapter 1

Introduction

The problem of reconstructing a low-rank signal matrix observed through a noisy channel has received enor-
mous attention from extensive body of literature within machine learning, signal processing and information
theory. Various statistical and machine learning tasks can be reduced to this canonical problem, including
but not limited to, sparse PCA [109, 113, 31, 66, 65], community detection [1, 64], submatrix localization
[119, 98], and Gaussian mixture clustering [144, 173, 159, 44].

Among the numerous models developed for this purpose, the spiked model introduced by Johnstone
[107] plays a fundamental role, especially for interpreting and understanding high-dimensional asymptotics.
This model is also referred to as deformed ensembles in the literature of random matrix theory. Theoretical
analysis of the spiked models has yielded a number of important statistical insights [14, 15, 108, 5, 109, 136,
66, 65, 28, 29, 111, 137].

This dissertation mainly focuses on the asymmetric version of the spiked model. In this model, we
observe a matrix A ∈ Rn×d which is given by the sum of a low-rank signal and random noise

A = snΛΘT +Z , (1.1)

where Λ ∈ Rn×r and Θ ∈ Rd×r are the factors that we would like to estimate, sn > 0 is the signal-to-noise
ratio, and Z ∈ Rn×d consists of random noise. We will consider the high-dimensional asymptotics with a
low-rank structure, whereby d, n→∞ and r remains fixed.

In what follows, we will denote by a1, . . . ,an the rows of A. Before stating any of our result, we describe
a few applications of model (1.1) to motivate the study.

Example 1.0.1 (Sparse PCA). In a simple model for sparse PCA [109], we observe vectors

a1, . . . ,an ∼iid N(0,Σ),

where Σ = s2nΘΘT + Id with Θ ∈ Rd a sparse vector that we would like to estimate.
This is the special case of model (1.1), if we let r = 1 and Λ ∼ N(0, In).

Example 1.0.2 (Mixture of Gaussians with known covariance). In a mixture of Gaussian model, we observe
vectors ā1, . . . , ān ∼iid pN(Θ1,Σ1) + (1 − p)N(Θ2,Σ2). If the covariances coincide and are known: Σ1 =

Σ2 = Σ, and the population mean Θ̄ := pΘ1 + (1 − p)Θ2 can be estimated accurately, then we can define

1
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ai = Σ−1/2(āi − Θ̄). Hence the model is equivalent to observing a1, . . . ,an ∼iid pN((1 − p)Θ, Id) + (1 −
p)N(−pΘ, Id), with Θ := Σ−1/2(Θ1 −Θ2).

This is another special case of model (1.1), with r = 1 and (Λi)i≤n ∼iid pδ(1−p)+(1−p)δ−p. Estimating
Λ amounts to estimating the cluster labels.

1.1 An information-theoretic perspective

As demonstrated in these examples, it is often the case that the latent factors Λ, Θ have additional structure.
In the first example Θ ∈ Rd is a sparse vector, while in the second one Λ is a vector with i.i.d. entries
distributed according to a two-point mixture. This observation motivates us to assume a stylized model
whereby the rows Λ, Θ are mutually independent (and independent of Z) with (Λi)i≤n

iid∼ µΛ and (Θj)j≤d
iid∼

µΘ. Here, µΛ and µΘ are fixed probability distributions on Rr. For this part, we will also make the
assumption that Zij

iid∼ N(0, 1). We will assume an idealized setting where µΛ, µΘ and the signal-to-noise
ratio sn are known to the estimator. This setting was considered several times in recent past, see e.g.
[142, 125, 152, 18]. Recent work addresses the assumption that sn, µΛ, µΘ are known. Namely, [201] uses
empirical Bayes techniques to show that sn, µΛ, µΘ in many standard settings can be estimated consistently
based on data.

Several natural questions that arise in this Bayesian setting are as follows: What is the minimum
sn that enables recovery of the low-rank factors, and what is the corresponding Bayes optimal estimation
error? Closely related to our work are the results of [142, 125], who determined the precise asymptotics
of mutual information and (certain) estimation error metrics when n, d → ∞, in the proportional regime
n/d→ δ ∈ (0,∞). Our goal in this dissertation is to move beyond the proportional asymptotics and consider
the cases d/n → ∞ and d/n → 0. We show that depending on the scaling of the signal-to-noise ratio sn,
there are two interesting regimes that control the behavior of the estimation problem.

1. Strong signal regime: When sn ≍ n−1/2, we show that Λ can be estimated consistently (possibly
up to a rotation), while the minimum normalized estimation error of Θ remains bounded away from
0. We characterize the limiting error for estimating Θ.

2. Weak signal regime: When sn ≍ (nd)−1/4, our results imply that non-trivial estimation of Θ

is impossible. As for the estimation of Λ, we show that the current model (1.1) is equivalent to a
symmetric spiked model of size n×n. The minimum estimation error of the latter has been characterized
in [125], which allows us to derive expression for the minimum estimation error of Λ under model (1.1).

Our results are insightful for at least two reasons: (1) Our study establishes optimal performance achieved
by any algorithm in this context, which acts as an ideal benchmark in real-world applications; (2) The
equivalence between our model (1.1) and an n×n symmetric model suggests that there is no substantial loss
of accuracy in estimating Λ based on a smaller matrix, which yields a significant reduction of computational
complexity if n≪ d. We illustrate our general theory by carrying out a numerical study on genomics data.
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1.2 A computational perspective

High-dimensional statistical estimation problems are often addressed by constructing a suitable data-dependent
cost function L(ϑ), which encodes the statistician’s knowledge of the problem. This cost is then minimized
using an algorithm which scales well to large dimension. The most popular algorithms for high-dimensional
statistical applications are first order methods, i.e., algorithms that query the cost L(ϑ) by computing its
gradient (or a subgradient) at a sequence of points Θ1,. . .Θt. Examples include (projected) gradient descent,
mirror descent, and accelerated gradient descent.

This raises a fundamental question: What is the minimal statistical error achieved by first order methods?
In particular, we would like to understand in which cases these methods are significantly sub-optimal (in
terms of estimation) with respect to statistically optimal but potentially intractable estimators, and what is
the optimal tradeoff between number of iterations and estimation error.

These questions are relatively well understood only from the point of view of convex optimization, namely
if estimation is performed by minimizing a convex cost function L(ϑ), see e.g. [45, 34]. The seminal work of
Nemirovsy and Yudin [161] characterizes the minimum gap to global optimality L(Θt)−minϑ L(ϑ), where
Θt is the algorithm’s output Θt after t iterations (i.e., after t gradient evaluations). For instance, if L(Θ) is
a smooth convex function, there exists a first order algorithm which achieves L(Θt) ≤ minϑ L(ϑ) +O(t−2).
At the same time, no algorithm can be guaranteed to achieve a better convergence rate over all functions in
this class.

In contrast, if the cost L(ϑ) is nonconvex, there cannot be general guarantees of global optimality.
Substantial effort has been devoted to showing that –under suitable assumptions about the data distribution–
certain nonconvex costs L(Θ) can be minimized efficiently, e.g. by gradient descent [116, 132, 57]. This line
of work resulted in upper bounds on the estimation error of first order methods. Unlike in the convex case,
worst case lower bounds are typically overly pessimistic since non-convex optimization is NP-hard. Our
work aims at developing precise average-case lower bounds for a restricted class of algorithms, which are
applicable both to convex and nonconvex problems.

We are particularly interested in problems that exhibit an information-computation gap: we know
that the optimal statistical estimator has high accuracy, but existing upper bounds on first order methods
are substantially sub-optimal (see examples below). Is this a limitation of our analysis, of the specific
algorithm under consideration, or of first order algorithms in general? The main result of this part is a
tight asymptotic characterization of the minimum estimation error achieved by first order algorithms for two
families of problems. This characterization can be used, in particular, to delineate information-computation
gaps.

1.3 A sampling perspective

Sampling algorithms serve as one of the major building blocks of modern Bayesian inference. However, for
many high-dimensional models of interest, analytical derivation of the posterior distributions is computa-
tionally intractable, thus creating challenges in designing efficient sampling methods. The third part of the
dissertation is concerned with sampling from the posterior distribution of a low-rank signal that is corrupted
by noise. For this part, we consider the symmetric spiked model. More precisely, for a given signal-to-noise
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parameter β > 0, we observe an n× n symmetric matrix X generated as follows:

X =
β

n
θθT +W . (1.2)

In the above display, we assume W ∼ GOE(n), i.e., W is an n × n symmetric matrix with independently
distributed entries above the diagonal: {Wii : i ∈ [n]} iid∼ N(0, 2/n), {Wij : 1 ≤ i < j ≤ n} iid∼ N(0, 1/n). The
n-dimensional vector θ follows a product prior: θi

iid∼ πΘ, which is further independent of the additive noise
W . As always, we will assume β is fixed and is known to the estimator. We comment that if β > 1, then
this parameter can be consistently estimated via inspecting the top eigenvalue of X [14].

Given observation X, our goal is to establish efficient algorithms that sample from the posterior distri-
bution µX . Namely, we aim to design a method that accepts as input X, and outputs θalg ∼ µalg

X , such that
E
[
dist(µX , µ

alg
X )
]
= on(1) for some distance measure dist(·, ·).

If we take πΘ to be the Rademacher distribution, then model (1.2) reduces to the problem of Z2-
synchronization [176]. In this case, sampling from the posterior distribution of model (1.2) becomes a special
case of sampling from the Ising model [103], which is a distribution over the hypercube {±1}n that takes
the form

µIsing
J,h (σ) =

1

Z
exp

(
1

2
⟨σ, Jσ⟩+ ⟨h, σ⟩

)
.

In the above expression, Z > 0 is an unknown normalizing constant. In our case, h = 0 and J = β ·X.
One of the dominant approaches to approximately sample from such distributions is the Gibbs sampling

algorithm, also known as the Glauber dynamics. This is a Markov chain that updates one index at each
round according to its conditional probability distribution. Upper bounds on the mixing time of Glauber
dynamics under the Ising model are, to our knowledge, only established in the high-temperature regime
∥J∥op < 1 [?, 22, 82, 6], which corresponds to β < 1/4 in our model. Unfortunately, this is a regime in
which it is information-theoretically impossible to recover θ under the Z2-synchronization model [125]. On
the other hand, [27] proves that at sufficiently low temperature, the mixing time of Glauber dynamics is
exponentially large.

Another popular approach for conducting approximate Bayesian analysis is via variational inference [139,
36]. In general, variational inference attempts to compute the marginals of a high-dimensional distribution
by optimizing a suitable “free energy” function. The most commonly used objective function under this
category is the so-called “naive mean field” free energy. However, such approximation is incorrect for Z2-
synchronization and returns an inconsistent estimation. This inaccuracy can be remedied by applying a
simple TAP correction [186] to the free energy functional. In the case of Z2-synchronization and many
other problems, minimizing the TAP free energy leads to a consistent estimation in the low-temperature
regime [84, 49]. Despite its success, variational inference only provides estimates to the marginal posterior
distributions, thus falling short of generating a sampling mechanism. [118] build a sampling algorithm for
Ising model that fuses ideas from both MCMC (Markov Chain Monte Carlo) and variational inference,
and their approach is able to move beyond the high-temperature regime ∥J∥op < 1. However, they still
require that the majority of the eigenvalues of J fall inside an interval of length one. More recently, [4]
design a sampling method that is based on an algorithmic implementation of stochastic localization [80].
They focus on the Sherrington-Kirkpatrick model (this is Ising model with a random interaction matrix) at
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high-temperature with no external field. More precisely, they provide theoretical guarantee for ∥J∥op < 2,
and conjecture that their algorithm works in a broader setting ∥J∥op < 4. Their results also apply to
Z2-synchronization at high temperature.

In this part of the dissertation, we complement to prior works by designing a sampling algorithm that
efficiently samples from the posterior distribution of the general low-rank matrix estimation problem (1.2)
in the low-temperature regime (meaning that β is larger than some positive constant). We comment that
this is also the regime in which non-trivial recovery is expected. Similar to [4], our approach is motivated
by the stochastic localization process



Chapter 2

Low-rank matrix estimation with

diverging aspect ratios

2.1 Summary of main results

In this chapter we state results from an information-theoretic perspective. Namely, we assume the observed
matrix further follows a Bayesian model, and aim to give an exact characterization of the Bayesian minimum
mean squared error under a diverging aspect ratio. For this part, we focus on the case d/n→∞: analogous
statements for d/n→ 0 follow by interchanging n and d, as well as Λ and Θ. Our results reveal the following
two regimes:

Strong signal regime. This is obtained for sn ≍ n−1/2, and is relatively easy to characterize analytically.
Under this scaling, Λ can be estimated consistently (possibly up to a rotation), while the minimum
normalized estimation error of Θ remains bounded away from 0. We characterize the limiting error of
estimating Θ.

Weak signal regime: Estimation of Θ. This regime corresponds to sn ≍ (nd)−1/4, and most of our
technical work is devoted to its analysis. We prove that, in this regime, non-trivial estimation of Θ is
impossible: any estimator has asymptotically the same risk as the the null estimator Θ̂0 = E[Θ].

Weak signal regime: Mutual information. On the other hand, still in taking sn ≍ (nd)−1/4, estimation
of Λ is non-trivial. As a first result in this direction, we characterize the asymptotic mutual information

lim
n,d→∞

1

n
I(A;Λ),

and show that this is non-vanishing. Further, this mutual information is asymptotically the same as
for a symmetric observation model in which instead of A ∈ Rn×d, we observe Y ∈ Rn×n given by

Y =
qΘ
n
ΛΛT +W , W ∼ GOE(n) . (2.1)

(Here, qΘ := r−1
∫
∥θ∥2 µΘ(dθ), we take without loss of generality sn = (nd)−1/4, and GOE(n) denotes

the distribution of a symmetric matrix with independent entries on or above the diagonal (Wij)i≤j

6
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such that Wii ∼ N(0, 2/n) and Wij ∼ N(0, 1/n) for i < j.)

Weak signal regime: Estimation error. We then proceed to study the asymptotics of the Bayes optimal
matrix mean square error:

MMSE(µΛ, µΘ) := lim
n,d→∞

1

n2
E
{∥∥ΛΛT − E[ΛΛT|A]

∥∥2
F

}
. (2.2)

We characterize this limit in two regimes: n≪ d≪ n6/5 or n3 ≪ d, and in certain cases for all n≪ d

(here ≪ hides logarithmic factors.) In these cases we prove equivalence with model (2.1).

We believe that the conditions n ≪ d ≪ n6/5 or n3 ≪ d are artifacts of the proof. Indeed, the conclusion
holds for all n ≪ d under a natural (unproven) continuity assumption. We leave it to future work to cover
the intermediate range n6/5 ≲ d ≲ n3.

Both the limiting mutual information and the asymptotic estimation error MMSE(µΛ, µΘ) are given
by explicit expressions known as ‘replica symmetric formulas,’ because they are correctly predicted by the
replica method in spin glass theory [140, 151]. However, the asymptotic equivalence with the symmetric
model (2.1) is insightful in itself (i.e., independently of the fact that we can give explicit formulas for the
asymptotic error and mutual information):

1. The asymptotic equivalence between model (1.1) and model (2.1) implies that the optimal estimation
depends on µΘ only though its second moment. In other words, no substantial improvement is achieved
in the regime covered by this equivalence exploiting the knowledge of the distribution of Θ.

2. The symmetric matrix Y is closely related to the Gram matrix Y ′ = (AAT−dIn)/
√
nd, an observation

that is confirmed by inspecting the proof. This implies that there is no substantial loss of accuracy in
estimating Λ uniquely on the basis of Y ′. This yields a substantial reduction in complexity for n≪ d.

We warn the reader that these conclusions do not apply in settings that are not captured here. For instance,
in sparse PCA, cf. Example 1.0.1, one might be interested in cases in which the number of non-zeros of the
principal component Θ is sub-linear in the dimension d. This case cannot be modeled as above, and requires
instead to consider µΘ dependent on n, d.

The rest of the paper is organized as follows. We briefly review related work in Section 2.2. We then
present our results for the strong signal regime in Section 2.3 and the weak signal regime in Section 2.4. We
finally apply the general theory to the case of Gaussian mixture models in Section 2.5 and compare it with
analysis on real data in Section 2.6.

2.1.1 Notations and conventions

For k ∈ N, we define the set [k] := {1, 2, · · · , k}. We typically use lower case non-bold letters for scalars (m,
n, j), and bold for vectors and matrices (x, y, z, A, B, C). We use ∥v∥ to denote the Euclidean norm of
a vector v, and ∥M∥F to denote the Frobenius norm of a matrix M . For {cn}n∈N+

, {dn}n∈N+
⊆ R+, we

say cn ≫ dn if and only if cn/dn → ∞, and for {en}n∈N+
⊆ R, we say en = on(1) if and only if en → 0 as

n→∞. We denote by p-lim convergence in probability.
For k ∈ N+, we denote by S+

k the set of positive semi-definite matrices in Rk×k, and denote by O(k) the
set of orthogonal matrices in Rk×k. For M ∈ S+

k , we let M1/2 ∈ S+
k be any positive semi-definite matrix

such that M = M1/2M1/2.
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We denote the i-th row of the factors Λ, Θ by Λi and Θi, respectively. We use Λ0 and Θ0 to represent
length-r random vectors drawn from probability distributions µΛ and µΘ. We sometimes need to write the
posterior distribution of (Λ,Θ) given particular observations. In this case, we use the lower case letters
θ,λ,λi,θi to represent variables corresponding to (Θ,Λ,Λi,Θi) in the posterior distribution.

Throughout the paper, we use capital letter C to represent various numerical constants.

2.2 Further related work

As mentioned in the introduction, most earlier work deriving sharp asymptotics results focuses on the
proportional regime n ≍ d, sn = n−1/2. In particular, [127] first obtained the limiting expression for
Bayesian mean square error using non-rigorous tools from statistical mechanics. The conjectured expression
was rigorously justified for special distributions µΛ, µΘ in [65, 64]. However, the proof technique of [65, 64]
relies on the fact that approximate message passing (AMP) algorithm achieves Bayes optimality and does
not apply to the general case.

Several groups developed rigorous approaches to prove the asymptotic formulas in increasing degrees
of generality: spatial coupling [68]; the cavity method [125, 142, 78]; adaptive interpolation [21]; partial
differential equation techniques [70].

A different line of research uses the second moment method to derive upper and lower bounds on the
information-theoretic thresholds [18, 171, 170] for partial or exact recovery. This approach typically yields
non-asymptotic bounds, under a broader class of settings but the results only determine such thresholds up
to undetermined multiplicative constants. In contrast, here we attempt to obtain a characterization that is
accurate up to (1 + on(1)) factors.

From a computational viewpoint, AMP-based algorithms can be shown to achieve the Bayesian error
for a large region of parameters [24, 152]. One appealing fact about the AMP is that its high-dimensional
behavior can be sharply characterized by state evolution.

Minimax guarantees were obtained by a number of groups for special cases of the low-rank model
(1.1). Sparse PCA and Gaussian mixtures are arguably the most studied models in the literature, see e.g.,
[174, 96, 160, 30, 43] . These works often yield characterizations that hold up to usually a constant or
logarithmic multiplicative gap.

Gaussian mixture models (GMM) provide a useful context for evaluating and comparing various clus-
tering algorithms. We will use it here to illustrate the applicability of our general results. The goal can
be either estimating the centers [62, 63, 117, 143, 173], or recovering the underlying cluster assignments
[190, 3, 39, 122, 10, 86]. As we will see, in the high-dimensional weak signal regime, the cluster centers
cannot be estimated, but the cluster assignments can be estimated with non-trivial accuracy.

Several algorithms were studied in detail for clustering under GMM, including semi-definite program-
ming (SDP) [169, 9, 86, 102, 129], iterative algorithms with spectral initialization [3, 190, 122, 10, 133], the
method of moments [168, 87, 114, 144, 101, 26, 99], and EM-based algorithms [63, 16, 106, 44].

Finally, in concurrent work, Donoho and Feldman recently characterized the accuracy of eigenvalue
shrinkage methods in the spiked model with diverging aspect ratio [88, 72].
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2.3 Strong signal regime

We first consider the strong signal regime in which we set sn = 1/
√
n, and therefore we have

A =
1√
n
ΛΘT +Z ∈ Rn×d. (2.3)

We define QΛ := EΛ0∼µΛ [Λ0Λ
T
0 ] ∈ S+

r and QΘ := EΘ0∼µΘ [Θ0Θ
T
0 ] ∈ S+

r . Before we proceed, we establish
the following conventions for the distributions µΛ, µΘ.

Remark 2.3.1. Without loss of generality we can and will assume that both QΛ and QΘ are invertible.
Furthermore, we can assume that QΘ = qΘIr for some qΘ ∈ R>0.

More precisely, we next show that —given arbitrary probability distributions (µΘ, µΛ)— the conditions
of Remark 2.3.1 can always be satisfied by a reparameterization.

For Λ0 ∼ µΛ and Θ0 ∼ µΘ, if either Λ0
a.s.
= 0 or Θ0

a.s.
= 0 then estimation becomes trivial. We can

therefore assume that this is not the case. By eigendecomposition of QΛ and QΘ, there exist 0 < k1, k2 ≤ r
and non-random matrices M1 ∈ Rr×k1 , M2 ∈ Rr×k2 with full column ranks such that Λ0 = M1Λ

′
0,

Θ0 = M2Θ
′
0, and E[Λ′

0(Λ
′
0)

T] = Ik1 , E[Θ
′
0(Θ

′
0)

T] = Ik2 .
Assume MT

1M2 has rank k3 ≤ min(k1, k2), and let MT
1M2 = USV T be its singular value decomposi-

tion (SVD) with U ∈ Rk1×k3 , V ∈ Rk2×k3 having orthonormal columns. We then set Λ̄ ∈ Rn×k3 a matrix
with i.i.d. rows that are copies of SUTΛ′

0 and Θ̄ ∈ Rd×k3 a matrix with i.i.d. rows that are copies of V TΘ′
0.

We can then write ΛΘT = Λ̄Θ̄T and the latter satisfies the conditions of Remark 2.3.1.
Note that this argument shows that we could assume qΘ = 1 as well, but it is convenient to keep this

as a free parameter.

2.3.1 Estimation of Λ

We first consider estimation of Λ. We will show that a simple spectral estimator provides a consistent estimate
up to a rotation in the r-dimensional Euclidean space. Consistency in terms of vector mean square error is
not guaranteed due to potential non-identifiability issues. We propose sufficient conditions on (µΛ, µΘ), that
imply consistency in terms of vector mean square error as well.

Denote by Λ̂s ∈ Rn×r the matrix whose columns are the top r eigenvectors of AAT, normalized so
that Λ̂T

s Λ̂s/n = Ir. Denote by P, P̂ ∈ O(n) the projection matrices onto the column spaces of Λ and Λ̂s,
respectively. We use the following distance between the two subspaces as estimation loss

Lsin(Λ̂s,Λ) := ∥P(I − P̂)∥op = ∥P̂(I −P)∥op = sinα(Λ̂s,Λ), (2.4)

where α(Λ̂s,Λ) is the principal angle between the two column spaces.

Theorem 2.3.1. Assume µΛ, µΘ have finite non-singular second moments QΛ,QΘ with QΘ = qΘIr (with
no loss of generality per Remark 2.3.1). If n, d→∞ with d/n→∞, then under the model of Eq. (2.3):

1. Lsin(Λ̂s,Λ)
P→ 0.

2. If we further assume that for some ε > 0 we have EΛ0∼µΛ
[∥Λ0∥4+ε] <∞, then there exists an estimator

L̂ : A 7→ L̂(A) ∈ Rn×n, such that E
[
∥L̂(A)−ΛΛT∥2F

]
/n2 → 0 as n, d→∞.
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3. Let Λ0 ∼ µΛ. If we further assume that there does not exist Ω ∈ O(r), such that Ω ̸= Ir and
ΩΛ0

d
= Λ0, then there exists Λ̂ : A 7→ Λ̂(A) ∈ Rn×r, such that E

[
∥Λ̂(A)−Λ∥2F

]
/n→ 0 as n, d→∞.

We delay the proof of Theorem 2.3.1 to Appendix A.3.1.

2.3.2 Estimation of Θ

Next, we turn to the estimation of Θ. According to Theorem 2.3.1, Λ can be estimated consistently under
identifiability conditions. Therefore, a reasonable first step is to study the case in which Λ is given. This
yields a lower bound on the Bayesian error of the original problem. We will see that this lower bound can
be achieved asymptotically even if Λ must be estimated.

We can explicitly write the conditional distribution of Θ given (Λ,A). Using the Gaussian density
formula, we see that for all j ∈ [d], the posterior distribution of Θj is

p(dθj |Λ,A) ∝ exp

(
− 1

2n

n∑
i=1

⟨Λi,θj⟩2 +
1√
n

n∑
i=1

Aij⟨Λi,θj⟩
)
µΘ(dθj). (2.5)

Eq. (2.5) leads to the following asymptotic lower bound:

Theorem 2.3.2. Consider the strong signal model of Eq. (2.3), assuming, without loss of generality, the
setting of Remark 2.3.1. We let n, d → ∞ simultaneously with d/n → ∞, then for any estimator θ̂ : A 7→
θ̂(A) ∈ Rd×r, we have

lim inf
n,d→∞

1

d
E
[
∥θ̂(A)− θ∥2F

]
≥ rqΘ − E

[∥∥E[Θ0|Q1/2
Λ Θ0 +G]

∥∥2] , (2.6)

where G ∼ N(0, Ir), Θ0 ∼ µΘ are mutually independent. Notice that the right hand side of Eq. (2.6) is
independent of (n, d).

If we further assume E[∥Θ0∥4] <∞, then for any M̂ : A 7→ M̂(A) ∈ Rd×d, we have

lim inf
n,d→∞

1

d2
E
[
∥M̂(A)−ΘΘT∥2F

]
≥ rq2Θ −

∥∥∥E [E[Θ0|Q1/2
Λ Θ0 +G]E[Θ0|Q1/2

Λ Θ0 +G]T
] ∥∥∥2

F
. (2.7)

We postpone the proof of Theorem 2.3.2 to Appendix A.3.2. Next, we show that the lower bound
proposed in Theorem 2.3.2 can be achieved under identifiability conditions.

Theorem 2.3.3. Under the conditions of Theorem 2.3.1, claim 3, there exist estimators θ̂ : A 7→ θ̂(A) and
M̂ : A 7→ M̂(A), such that

lim
n,d→∞

1

d
E
[
∥Θ̂(A)−Θ∥2F

]
= rqΘ − E

[∥∥E[Θ0|Q1/2
Λ Θ0 +G]

∥∥2] ,
lim

n,d→∞

1

d2
E
[
∥M̂(A)−ΘΘT∥2F

]
= rq2Θ −

∥∥∥E [E[Θ0|Q1/2
Λ Θ0 +G]E[Θ0|Q1/2

Λ Θ0 +G]T
] ∥∥∥2

F
.

We defer the proof of Theorem 2.3.3 to Appendix A.3.3. Theorems 2.3.2 and 2.3.3 together complete
the analysis for the estimation of Θ in the strong signal regime.
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2.4 Weak signal regime

In this section, we consider the weak signal regime where sn = 1/ 4
√
nd. Thus the model of interest is

A =
1

4
√
nd

ΛθT +Z ∈ Rn×d . (2.8)

For convenience, we define rn := 4
√
d/n. By assumption, we see that rn →∞ as n, d→∞.

2.4.1 Background: the symmetric spiked model

As mentioned in the introduction, our main technical result is that, in the weak signal regime, estimation
under model (2.8) is equivalent to estimation under a symmetric spiked model. Under this model we observe
Y ∈ Rn×n given by

Y =
qΘ
n
ΛΛT +W , (2.9)

where W
d
= GOE(n), and Λi

iid∼ µΛ, independent of each other. We view qΘ > 0 as a signal-to-noise ratio
parameter.

We denote the Bayesian MMSE of model (2.9) by

MMSEsymm
n (µΛ; qΘ) := min

M̂( · )

1

n2
E
[∥∥∥M̂(Y )−ΛΛT

∥∥∥2
F

]
. (2.10)

Note that the Bayesian MMSE is achieved by the posterior expectation M̂(Y ) = E[ΛΛT|Y ]. We also define
the normalized mutual information

Isymm
n (µΛ; qΘ) :=

1

n
E log

dPΛ,Y

d(PΛ × PY )
(Λ,Y ) . (2.11)

A significant amount of rigorous information is available about this model. For s > 0 and Q ∈ S+
r , we define

the free energy functional F(s,Q) and its maximizer Q∗(s) ∈ S+
r via

F(s,Q) := −s
4
∥Q∥2F + E

{
log

(∫
exp(
√
szTQ1/2λ+ sλTQΛ0 −

s

2
λTQλ)µΛ(dλ)

)}
. (2.12)

Q∗(s) ∈ argmaxQ∈S+
r
F(s,Q). (2.13)

In the above expression, expectation is taken over Λ0 ∼ µΛ and z ∼ N(0, Ir) independent of each other.
These functionals are directly related to the mutual information and the Bayes MMSE of model (2.9), as
stated below.

Theorem 2.4.1 ([125], Corollary 42, Proposition 43). There exists a deterministic countable set D ⊆ R≥0

such that

qΘ ∈ R≥0 ⇒ lim
n→∞

Isymm
n (µΛ; qΘ) =

1

4
q2Θ∥EΛ0∼µΛ

[Λ0Λ
T
0 ]∥2F − sup

Q∈S+
r

F(q2Θ,Q) ,

qΘ ∈ R≥0 \ D ⇒ lim
n→∞

MMSEsymm
n (µΛ; qΘ) = ∥EΛ0∼µΛ [Λ0Λ

T
0 ]∥2F − ∥Q∗(s)∥2F .
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2.4.2 Estimation of Θ

We first consider estimation of Θ. We claim that in this case no estimator outperforms a naive one.

Theorem 2.4.2. Consider the weak signal model of Eq. (2.8), assuming, without loss of generality, the
setting of Remark 2.3.1. Let n, d → ∞ simultaneously with d/n → ∞. Then for any estimator Θ̂ : A 7→
Θ̂(A) ∈ Rd×r, we have

lim inf
n,d→∞

1

d
E[∥Θ̂(A)− θ∥2F ] ≥ rqΘ − ∥EΘ0∼µΘ

[Θ0]∥2.

If we further assume µΘ has bounded fourth moment, then for any M̂ : A 7→ M̂(A) ∈ Rd×d, we have

lim inf
n,d→∞

1

d2
E[∥M̂(A)−ΘΘT∥2F ] ≥ rq2Θ − ∥EΘ0∼µΘ

[Θ0]∥4 .

Notice that the above lower bounds are achieved by the null estimators Θ̂(A) = E[Θ] ∈ Rd×r and M̂(A) =

E[ΘΘT] ∈ Rd×d.

The proof of this statement is similar to the one of Theorem 2.3.2. Namely, we will prove that the mean
square error achieved by simply taking the prior mean asymptotically agrees with the Bayesian MMSE for
an estimator that has access to Λ as additional information. The argument is summarized in Appendix
A.4.1.

2.4.3 Estimation of Λ

We finally consider the technically most interesting case, namely the estimation of Λ in the weak signal
regime. For simplicity, we will restrict ourselves to studying the matrix mean square error:

MMSEasym
n (µΛ, µΘ) := inf

M̂( · )

1

n2
E
[∥∥∥ΛΛT − M̂(A)

∥∥∥2
F

]
, (2.14)

where the infimum is taken over all estimators (measurable functions) M̂ : A 7→ M̂(A) ∈ Rn×n. Of course
MMSEasym

n depends on the distributions µΛ, µΘ.
In the rank-one case r = 1, if EΘ0∼µΘ [Θ0] ̸= 0, then the naive estimator r−1

n Ay with y = EµΘ [Θ0]
−11d/

√
d

is consistent:

1

n

∥∥r−1
n Ay −Λ

∥∥2 P→ 0.

In this case, a consistent estimate of ΛΛT naturally follows. Therefore, if Θ0 has non-vanishing expectation,
the estimation problem is significantly easier.

When r ≥ 2, if µΘ has non-zero mean, the same construction leads to consistent estimation of the
projection of Λ onto the direction determined by E[Θ0] (for Θ0 ∼ µΘ). Once this component is subtracted,
the problem is effectively reduced to one in which µΘ has zero mean.

For the remainder of this section, we focus on the more challenging case E[Θ0] = 0r. In addition, for
technical reasons we will require µΘ to have vanishing third moment.
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Assumption 2.4.1. We assume E[Θ0] = 0r, E[Θ0 ⊗ Θ0 ⊗ Θ0] = 0r×r×r, where ⊗ denotes the tensor
product. Furthermore, we assume that µΘ, µΛ are sub-Gaussian.

Our main results establish that, according to several criteria, estimation in the asymmetric model (2.8)
with n, d→∞, d/n→∞ is equivalent to estimation in the symmetric spiked model (2.9).

Our first result on the relation between these models is in terms of mutual information.

Theorem 2.4.3. Define the mutual information per coordinate in asymmetric model of Eqs. (2.8), via

Iasym
n (µΛ, µΘ) :=

1

n
E log

dPΛ,A

d(PΛ × PA)
(Λ,A) . (2.15)

Further recall the definition of mutual information in the symmetric model (2.9) given by Eq. (2.11). Within
the setting of Assumption 2.4.1, we let n, d → ∞ simultaneously with d/n → ∞. In addition, we require
without loss of generality QΘ = qΘIr, cf. Remark 2.3.1. Then the following limits exist and are equal

lim
n,d→∞

Iasym
n (µΛ, µΘ) = lim

n→∞
Isymm
n (µΛ; qΘ) .

The proof of Theorem 2.4.3 is presented in Appendix A.4.2 for µΛ with bounded support. The gener-
alization to µΛ with unbounded support is discussed in Appendix A.4.4.

As mentioned above, earlier work determined the asymptotics of the mutual information for the symmet-
ric model Isymm

n (µΛ; qΘ). In particular, the next corollary follows directly from Theorem 2.4.3 and Theorem
2.4.1.

Corollary 2.4.1. Recall that S+
r denotes the set of r×r positive semidefinite matrices, and F : R≥0×S+

r → R
is defined in Eq. (2.12). Under the conditions of Theorem 2.4.3, we have

lim
n,d→∞

Iasym
n (µΛ, µΘ) =

1

4
q2Θ∥EΛ0∼µΛ

[Λ0Λ
T
0 ]∥2F −F∗(qΘ)

:=
1

4
q2Θ∥EΛ0∼µΛ

[Λ0Λ
T
0 ]∥2F − sup

Q∈S+
r

F(q2Θ,Q) .

Recall the de Bruijn identity relating mutual information and minimum mean square error, see [183, 97,
64]:

1

4
MMSEsymm

n (µΛ;
√
s) =

d

ds
Isymm
n (µΛ;

√
s) . (2.16)

Since MMSEsymm
n (µΛ;

√
s) is non-increasing in s, the asymptotics of Isymm

n (µΛ;
√
s) essentially determines the

asymptotics of MMSEsymm
n (µΛ;

√
s). Namely, we have limn→∞ MMSEsymm

n (µΛ;
√
s) = ∥EΛ0∼µΛ

[Λ0Λ
T
0 ]∥2F −

4 ∂
∂sF∗(

√
s) for almost all values of s.

It would be tempting to conclude that Theorem 2.4.3 and Corollary 2.4.1 lead directly to analogous
theorems relating MMSEasym

n (µΛ, µΘ) and MMSEsymm
n (µΛ; qΘ). Establishing such a consequence is more

challenging than one would naively expect because we do not have an identity analogous1 to Eq. (2.16) for
the asymmetric model. We can nevertheless establish the following, via a perturbation argument.

1One could differentiate the mutual information Iasym
n (µΛ, µΘ) with respect to the signal-to-noise ratio parameter qΘ, but

the result is related to error in estimating ΛΘT instead of ΛΛT.
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Theorem 2.4.4. Under the conditions of Theorem 2.4.3, for all but countably many values of qΘ > 0, we
have

lim inf
n,d→∞

MMSEasym
n (µΛ, µΘ) ≥ lim

n→∞
MMSEsymm

n (µΛ; qΘ). (2.17)

Further, consider a modified model in which the statistician observes (A,Y ′(ε)), where A is given by
Eq. (2.8), and

Y ′(ε) :=

√
ε

n
ΛΛT +W ′, W ′ ∼ GOE(n) .

Here, we assume W ′ is independent of everything else. Denote by MMSEasym
n (µΛ, µΘ; ε) the corresponding

matrix mean square error. Then, for all but countably many values of qΘ > 0, we have

lim
ε→0+

lim sup
n,d→∞

MMSEasym
n (µΛ, µΘ; ε) ≤ lim

n→∞
MMSEsymm

n (µΛ; qΘ). (2.18)

The proof of Theorem 2.4.4 is outlined in Appendix A.4.3 (for distributions with bounded support) and
A.4.4 (for the general case).

Remark 2.4.1. In particular, Theorem 2.4.4 establishes that the estimation errors under the symmetric and
asymmetric models coincide asymptotically, provided that the error in the perturbed model MMSEasym

n (µΛ, µΘ; ε)

is uniformly continuous (in n) as ε ↓ 0. We expect this to be generically the case, but proving this remains
an open problem.

The next theorem establishes a sequence of sufficient conditions under which we can prove asymptotic
equivalence of estimation errors in the asymmetric and symmetric models.

Theorem 2.4.5. Under the conditions of Theorem 2.4.3, we further assume at least one of the following
conditions holds:

(a) dn−3(log n)−6 →∞.

(b) d(log d)8/5/n6/5 → 0 and µΛ has bounded support.

(c) For the case r = 1, define Y =
√
γΛ0 + G with G ∼ N(0, 1) independent of Λ0 ∼ µΛ, and define

I(γ) = E log
dpY |Λ0

dpY
(Y,Λ0). Let

Ψ(γ, s) =
s2

4
+
γ2

4s
− γ

2
+ I(γ).

Assume that the global maximum of γ 7→ Ψ(γ, qΘ) over (0,∞) is also the first stationary point of the
same function.

Then, we have

lim
n,d→∞

MMSEasym
n (µΛ, µΘ) = lim

n→∞
MMSEsymm

n (µΛ; qΘ). (2.19)

(For condition (b), the conclusion is guaranteed to hold for all but countably many values of qΘ > 0.)
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We defer the proof of Theorem 2.4.5 to Appendix A.4.5.
As anticipated in the introduction, the results presented in Section 2.4.2 and Section 2.4.3 support two

key statistical insights, which we next summarize:

1. In the weak signal regime, it is possible to partially recover Λ while impossible to recover Θ in any
non-trivial sense. For instance, in the high-dimensional Gaussian mixture model, we might be able to
estimate the labels, even if it is impossible to estimate the cluster centers.

In the next section, we will further explore the application of these results to Gaussian mixture models,
while in Section 2.6 we will investigate such asymmetry in real world datasets.

2. In this regime, ideal estimation accuracy is asymptotically independent of the distribution of the high-
dimensional factor Θ. As demonstrated, for instance, by Eq. (2.19), the only dependence on µΘ is
through its second moment.

The three sufficient conditions given in Theorem 2.4.5 correspond to three different arguments.
The most straightforward case is the one of condition (a). We use the fact that

1√
nd

(
AAT − dIn

)
=

1

n
ΛQ̂ΘΛ

T +
1√
nd

(
ZZT − dIn

)
+ cross terms , (2.20)

where Q̂Θ := ΘTΘ/d ≈ qΘIr. For d ≫ n3, [40] proved that the total variation distance between the
distribution of the Wishart matrix

(
ZZT − dIn

)
/
√
nd and the one of W ∼ GOE(n) converges to 0. While

we still have to deal with the cross terms, under this condition the two models are close to each other.
For d≪ n3 the Wishart and GOE distributions are asymptotically mutually singular [40], and therefore

proving asymptotic equality of the mean square error has to rely on a more carefully analysis. In fact, the
proof of part (b) follows a different path and relies heavily on Theorem 2.4.4.

Finally, part (c) combines the bound of Theorem 2.4.4 with a matching bound that is based on the
analysis of a Bayesian approximate message passing (AMP) algorithm [152]. Indeed, the sufficient condition
of part (c) coincides with the condition that Bayes AMP achieves Bayes optimal estimation error.

2.5 Clustering under the Gaussian mixture model

As an application of our theory, we consider clustering under Gaussian mixture model (GMM). Throughout,
we will assume that all Gaussian components have equal covariance Σ, and that Σ is known. Without loss
of generality, we can therefore assume that data are preprocessed so that Σ = Id. We will focus on the weak
signal regime, because it is mathematically the most interesting regime.

The Gaussian mixture model fits our general framework, with the Λi’s encoding the data point labels:
Λi takes k possible values, with k being the number of clusters. We will measure estimation accuracy using
the overlap

Overlapn := max
π∈Sk

1

n

n∑
i=1

1

{
Λ̂i = Λπ

i

}
.

Here, Sk denotes the group of permutations over k elements, and Λπ
i denotes the action of this group on

the cluster label encodings of the i-th sample. (We will work with slightly different encodings for the cases
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k = 2 and k ≥ 3 below.)

2.5.1 Two clusters with symmetric centers

As a warm-up example, we consider the case of k = 2 clusters with equal weights. For i ∈ {1, . . . , n}, we
observe an independent sample

ai ∼
1

2
N(Θ/

4
√
nd, Id) +

1

2
N(−Θ/ 4

√
nd, Id) . (2.21)

Here, ±Θ/ 4
√
nd ⊆ Rd are the cluster centers. Denoting by (Λi)i≤n

iid∼ Unif({−1,+1}) the cluster labels, and
by A ∈ Rn×d the matrix whose i-th row corresponds to the i-th sample, we have that A follows model (2.8)
with r = 1.

We further assume Θ has independent coordinates: (Θj)j≤d
iid∼ µΘ, where µΘ is a centered sub-Gaussian

distribution and has zero third moment.

Remark 2.5.1. We note that, for r = 1, there is no real loss of generality in assuming (Θj)j≤d to be i.i.d.
sub-Gaussian. Indeed, model (2.8) is equivariant under rotations Θ 7→ ΩΘ, A 7→ AΩT, where Ω ∈ Rd×d

is an orthogonal matrix. Further, any loss function that depends uniquely on Λ is also invariant under the
same group. Consider minimax estimation when Θ belongs to the sphere: ∥Θ∥22 = d qΘ. As a consequence
of the Hunt-Stein theorem, the least favorable prior is the uniform distribution over the same sphere. We
expect the asymptotic Bayes risk under this prior (and therefore the minimax risk) to be the same as the
risk under the prior (Θj)j≤d

iid∼ N(0, qΘ).

Proposition 2.5.1. Consider the Gaussian mixture model as in Eq. (2.21). Assume n, d → ∞ simultane-
ously and d/n→∞, then the following results hold:

(a) If qΘ ≤ 1, then, for any clustering estimator Λ̂, as n, d→∞ we have

Overlapn
P→ 1

2
. (2.22)

(b) If qΘ > 1, let s∗ be the largest non-negative solution of

s = q2ΘE
{
tanh

(
s+
√
sG
)2}

, (2.23)

where G ∼ N(0, 1). Then s∗ > 0 and there exists an estimator achieving

Overlapn
P→ Φ(

√
s∗), (2.24)

where Φ denotes the cumulative distribution function for standard Gaussian distribution.

The proof of this result uses the characterization of optimal estimation in the corresponding symmetric
model proven in [64], and we present the proof of point (a) in Appendix A.7.1. The overlap in point (b) can
be achieved using orthogonal invariant Bayes AMP with spectral initialization on (AAT − dIn)/

√
nd. This

algorithm is described and analyzed in [148].
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2.5.2 Two or more clusters with orthogonal centers

We next consider the case of k ≥ 2 clusters with approximately orthogonal centers. We denote by {Θ·i/
4
√
nd :

i ∈ [k]} ⊆ Rd the cluster centers. Let Θ ∈ Rd×k with the i-th column given by Θ·i. For j ∈ [d], we let
Θj ∈ Rk be the j-th row of Θ. We assume Θj

iid∼ µΘ, where µΘ is sub-Gaussian with vanishing first and
third moments and diagonal covariance: Cov(Θ1) = qΘIk.

Let ej be the j-th standard basis vector in Rk. We encode the data point labels by setting Λi = ej if
and only if the i-th sample belongs to the j-th cluster, and consider the case of equal proportions, so that
(Λi)i≤n

iid∼ Unif({e1, · · · , ek}).
As before, we let A ∈ Rn×d be the matrix whose rows are i.i.d. samples ai from the Gaussian mixture

model with centers {Θ·i/
4
√
nd : i ∈ [k]}. With these definitions, the matrix A is distributed according to

model (2.8).

Remark 2.5.2. While we state our results for random Θ, we can generalize Remark 2.5.1 to the present
setting. This argument implies that the results of this section also characterize the minimax estimation error
over the class of problems with orthogonal centers ΘTΘ = d qΘIk.

Our next theorem establishes the threshold for weak recovery of the cluster labels in the high-dimensional
regime d/n→∞. Recall the function F(s,Q) is defined in Eq. (2.12), where we take µΛ =

∑k
i=1 δei/k. We

let Q0 := 1k1
T
k/k

2 and define the threshold

qinfoΘ (k) := inf
{
qΘ ≥ 0 : sup

Q∈S+
k

F(q2Θ,Q) > F(q2Θ,Q0)
}
. (2.25)

Theorem 2.5.1. Consider the Gaussian mixture model with k components of equal weights, in the high-
dimensional asymptotics d, n→∞, d/n→∞. Under the above assumptions on the centers Θ, the following
results hold:

(a) If qΘ < qinfoΘ (k), then for any estimator Λ̂ : Rn×d → {ej : j ∈ [k]}n that is a measurable function of
the input A, we have

p-lim
n,d→∞

Overlapn =
1

k
.

(b) Assume either dn−3(log n)−6 → ∞ or dn−6/5(log d)8/5 → 0. If qΘ > qinfoΘ (k), then there exists an
estimator Λ̂ : Rn×d → {ej : j ∈ [k]}n that is a measurable function of the input A, such that

lim inf
n,d→∞

E[Overlapn] >
1

k
.

We defer the proofs of parts (a) and (b) of Theorem 2.5.1 to Appendices A.7.2 and A.7.3, respectively.
Note that [18, Theorem 2] implies qinfoΘ (k) = 2

√
k log k ·(1+ok(1)) as k →∞ (however, [18] does not establish

a sharp threshold). In contrast, Theorem 2.5.1 derives the exact threshold for every k.
Table 2.1 collects values for the thresholds qinfoΘ (k) for a few values of k, as obtained by numerically

evaluating Eq. (2.25). For k ≤ 4, this is expected to coincide with the spectral threshold, namely qinfoΘ (k) = k

[126]. (Notice that the apparent discrepancy with the threshold for k = 2 in the previous section is due to
the different normalization adopted here.)
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k qinfoΘ (k)
2 2
3 3
4 4
5 4.95
6 5.81
7 6.61
8 7.36

Table 2.1: Information-theoretic thresholds qinfoΘ (k) for 2 ≤ k ≤ 8.

2.5.3 Numerical experiments

We present in this section numerical experiments suggesting that the theory of the last sections is already
relevant at moderate values of d, n. We consider several clustering methods, and compare their performances
with the threshold qinfoΘ (k).

For our experiment we use built-in functions in Python3, for the following clustering methods:

(1) Lloyd’s algorithm, as implemented by the function KMeans() in the scikit-learn module with option
algorithm = “lloyd”.

(2) Agglomerative clustering, implemented by the function AgglomerativeClustering() in the scikit-learn
module with default parameters.

(3) EM algorithm, implemented by the function GaussianMixture() in the scikit-learn module with default
parameters.

(4) A semidefinite programming (SDP) relaxation described in [169]. We use the cvxpy module for the
optimization steps.

In Figure 2.1 we present results for these algorithms for n = 100, d = 2000, and µΘ = N(0, qΘ). For each
value of the pair (k, qΘ), we run 100 independent trials, and plot the average overlap versus qΘ. For the
case k = 2, we consider two slightly different settings: “Symmetric=True” corresponds to the case of two
centers symmetric around the origin, as in Section 2.5.1, and “Symmetric=False” corresponds to the case of
two approximately orthogonal centers as per Section 2.5.2. We also report the threshold qinfoΘ (k), its large
k approximation 2

√
k log k, and the algorithmic threshold qalgoΘ (k) = k (this is the conjectured threshold for

efficient recovery, which coincides with the spectral threshold [126, 152]).
Despite the small sample size, we observe that qinfoΘ (k) appears to capture the onset of non-trivial

clustering accuracy across multiple algorithms.

2.6 Asymmetry in factors estimation: real world datasets

Previous sections imply the existence of gaps in the estimation of Λ and Θ, in the high-dimensional asymp-
totics d/n→∞. In summary, in the strong signal regime, Λ can be estimated consistently up to a potential
rotation, while Θ can only be partially recovered. On the other hand, in the weak signal regime, Λ can be
partially recovered, while no estimator achieves better asymptotic performance than a naive one in terms of
the estimation of Θ.
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Figure 2.1: Average overlap achieved by several clustering algorithms on the Gaussian mixture model with
n = 100 datapoints, d = 2000 dimensions, averaged over 100 instances. The black vertical line corresponds
to the information-theoretic threshold for identifying clusters significantly better than random guessing; the
orange vertical line corresponds to the spectral or algorithmic threshold; the grey vertical line corresponds
to the approximated information-theoretic threshold 2

√
k log k.
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In this section, we investigate this asymmetry in real world datasets. We focus on a problem that can
be modeled as clustering with k = 2 clusters (this can be modeled as a GMM model, leading to Eq. (2.1)
with r = 1 as described in the previous section).

2.6.1 1000 Genomes Project

Our first experiment involves genotype data from the 1000 Genomes Project [59]. This provides genotypes for
n = 2, 504 individuals grouped in five population groups (corresponding to their geographic origins). For our
experiments, we extract d = 100, 000 common single-nucleotide polymorphisms (SNPs). Our preprocessing
steps follow from [200]. After preprocessing, we add independent Gaussian noise with variance 5 to the data
matrix, to make the problem more challenging.

Principal component analysis (PCA) is often used in genome-wide association studies, in particular to
explore the genetic structure of human populations [163, 164]. As a first step of our experiment, for each
pair of population groups, we randomly extract 30 subjects from each group without replacement. The
subsampled observations form a 60× 100, 000 genotype matrix, the columns of which are then centered and
rescaled. We next run PCA on this subset, and plot the projections onto the top 2 principal components.
We display one typical outcome of PCA in Figure 2.2. From the figures, we see that despite the high-
dimensionality, PCA still reflects the underlying population structure. We interpret this as indicating that
non-trivial clustering can be achieved on these data.
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Figure 2.2: Illustration of PCA on a subset of 1000 Genomes Project data. In these plots, the x axis
represents the projection onto the first principal component, and the y axis represents projection onto the
second principal component. Point colors and shapes correspond to population groups. Each experiment
involves 60 individuals in total, with 30 individuals from each of the two population groups.
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To further support our conclusion, we run K-means clustering on the subsampled datasets (using
sklearn.cluster.KMeans in Python 3 with default parameters). We then compute the overlap between the
true and estimated labels (in this example labels correspond to population groups). We repeat this proce-
dure independently 1000 times on randomly selected subsets of the data. The outcomes are recorded and
displayed in the lower triangle of Figure 2.3. From the figures, we see that K-means clustering estimates the
labels significantly better than random guessing (i.e., better than 50% accuracy) and achieves near-perfect
recovery for certain pairs of population groups.

We next estimate the cluster centers Θ, for each pair of population groups. We take two non-overlapping
subsets of the data (each with size 60) and run K-means on each subset: this leads to two distinct estimates
of the cluster centers (Θ̂

(1)
i )i∈{1,2} for data subset 1, and (Θ̂

(2)
i )i∈{1,2} for data subset 2. We then compute

the maximum normalized inner product

max
i,j≤2

|⟨Θ̂(1)
i , Θ̂

(2)
j ⟩|/(∥Θ̂

(1)
i ∥2∥Θ̂

(2)
j ∥2)

between the estimated cluster centers obtained via K-means from these two subsets of data.
This procedure is again repeated for 1000 times independently, and the distributions of the maximum

normalized inner products are displayed in the upper triangle of Figure 2.3. We observe that, for several
population pairs, the estimates Θ̂(1), Θ̂(2) are not significantly correlated (using initials, this is the case
for the pairs C-H, C-SA, EA-H, EA-SA, H-SA). Since these estimates are obtained based on independent
samples from the same population, we conclude that they are also not significantly correlated with the true
centers. When this happens, the behavior of this clustering problem seems to be captured by the weak signal
regime analyzed in the previous sections: clusters can be estimated in a non-trivial way, but cluster centers
cannot be estimated.

For the other population pairs, the cluster centers estimates are correlated, and clustering accuracy is
very high (this is the case for pairs A-C, A-EA, A-H, A-SA, with C-EA not as clear a case). This is analogous
to what we observe in our model in the strong signal regime.

2.6.2 RNA-Seq gene expression

We carry out a similar experiment on gene expression data for different types of cancers from the UCI Machine
Learning Repository2 [73]. The dataset contains 801 samples and 20531 attributes, with the predictors being
RNA-Seq gene expression levels measured by the Illumina HiSeq platform. Before proceeding, again we apply
additive Gaussian noise to the data matrix, with mean zero and variance 5. We consider five different cancer
types, denoted by “COAD”, “BRCA”, “KIRC”, “LUAD” and “PRAD”.

For each pair of cancer groups we subsample 30 subjects from each group, to construct a 60×20531 data
matrix. We then center and rescale the columns of this matrix to unit norms. A typical outcome of PCA is
presented in Figure 2.4. We observe that clusters corresponding to different cancer groups are well separated
for each of the pairs. In Figure 2.5, we report the overlaps between the labels obtained from K-means
clustering and the ground truth labels. The overlaps are very high for all pairs. These plots summarize the
results of 1000 independent repetitions of this experiment.

In the upper half of the same figure, we present the maximum normalized inner products between the
2https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq

https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq
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Figure 2.3: Simulation results derived from 1000 independent experiments for the 1000 Genomes Project
dataset. The boxplots in the upper triangle display the quantiles of the normalized inner products between
the estimated cluster centers. The boxplots in the lower triangle display the quantiles of overlaps between
true labels and labels obtained via K-means clustering. We annotate the medians in the corresponding
figures for readers’ convenience.
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Figure 2.4: PCA on subsets of RNA-Seq gene expression data: each time we select 30 datapoints from each
of the two cancer groups at random. Point colors and shapes stand for different cancer groups. We plot the
projections of these datapoints onto the subspace defined by their first two principal components.
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Figure 2.5: Simulation results derived from 1000 independent experiments for the UCI gene expression
dataset. The boxplots in the upper triangle display the quantiles of the normalized inner products between
estimated cluster centers. The boxplots in the lower triangle display the quantiles of the accuracy (overlap)
in reconstructing the true clusters. Medians are annotated in the figures.
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estimated cluster centers on two independent subsamples. The correlation is significantly different from zero,
but far from being close to one. Once more, this is analogous to the strong signal regime in our analysis.



Chapter 3

The estimation error of general first

order methods

3.1 Introduction

For this part, we not only consider low-rank matrix estimation, but also apply our results to high-dimensional
regression. More precisely, we study the following two models:

High-dimensional regression. Data are i.i.d. pairs {(yi,xi)}i≤n, where yi ∈ R is a label and xi ∈ Rp is
a feature vector. We assume xi ∼ N(0, Ip/n) and yi|xi ∼ P(yi ∈ · |xT

i θ) for a vector θ ∈ Rp. Our
objective is to estimate the coefficients θj from data X ∈ Rn×p (the matrix whose i-th row is vector
xi) and y ∈ Rn (the vector whose i-th entry is label yi).

Low-rank matrix estimation. Data consist of a matrix X ∈ Rn×p where xij = 1
nΛ

T
i θj+zij with Λi,θj ∈

Rr and zij
iid∼ N(0, 1/n). We denote by Λ ∈ Rn×r and θ ∈ Rp×r the matrices whose rows are ΛT

i and
θT
j respectively. Our objective is to to estimate Λ,θ from data X.

In order to discuss these two examples in a unified fashion, we will introduce a dummy vector y (e.g.,
the all-zeros vector) as part of the data in the low-rank matrix estimation problem. Let us point out that our
normalizations are somewhat different from, but completely equivalent to, the traditional ones in statistics.

The first question to address is how to properly define ‘first order methods.’ A moment of thought
reveals that the above discussion in terms of a cost function L(θ) needs to be revised. Indeed, given either
of the above statistical models, there is no simple way to construct a ‘statistically optimal’ cost function.1

Further, it is not clear that using a faster optimization algorithm for that cost will result in faster decrease
of the estimation error.

We follow instead a different strategy and introduce the class of general first order methods (GFOM).
In words, these include all algorithms that keep as state sequences of matrices u1, . . . ,ut ∈ Rn×r, and
v1, . . . ,vt ∈ Rp×r, which are updated by two types of operations: row-wise application of a function, or
multiplication by X or XT. We will then show that standard first order methods, for common choices of
the cost L(θ), are in fact special examples of GFOMs.

1In particular, maximum likelihood is not statistically optimal in high dimension [25].

26
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Formally, a GFOM is defined by sequences of functions F
(1)
t , G

(2)
t : Rr(t+1)+1 → Rr, F (2)

t , G
(1)
t :

Rr(t+1) → Rr, with the F ’s indexed by t ≥ 0 and the G’s indexed by t ≥ 0. In the high-dimensional
regression problem, we set r = 1. The algorithm produces two sequences of matrices (vectors for r = 1)
(ut)t≥1, ut ∈ Rn×r, and (vt)t≥1, vt ∈ Rp×r,

vt+1 = XTF
(1)
t (u1, . . . ,ut;y,u) + F

(2)
t (v1, . . . ,vt;v) (3.1a)

ut = XG
(1)
t (v1, . . . ,vt;v) +G

(2)
t (u1, . . . ,ut−1;y,u) , (3.1b)

where it is understood that each function is applied row-wise. For instance

F
(1)
t (u1, . . . ,ut;u) = (F

(1)
t (u1

i , . . . ,u
t
i;ui))i≤n ∈ Rn×r ,

where (usi )
T is the ith row of us. Here u,v are either deterministic or random and independent of everything

else. In particular, the iteration is initialized with v1 = XTF
(1)
0 (y,u) +F

(2)
0 (v). The unknown matrices (or

vectors) θ and Λ are estimated after t∗ iterations by θ̂ = G∗(v
1, · · · ,vt∗ ;v) and Λ̂ = F∗(u

1, . . . ,ut∗ ;y,u),
where the latter only applies in the low-rank matrix estimation problem. Let us point out that the update
also depend on additional information encoded in the two vectors u ∈ Rn, v ∈ Rp. This enables us to
model side information provided to the statistician (e.g., an ‘initialization’ correlated with the true signal)
or auxiliary randomness.

We study the regime in which n, p→∞ with n/p→ δ ∈ (0,∞) and r is fixed. We assume the number
of iterations t∗ is fixed, or potentially t∗ →∞ after n→∞. In other words, we are interested in linear-time
or nearly linear-time algorithms (complexity being measured relative to the input size np). As mentioned
above, our main result is a general lower bound on the minimum estimation error that is achieved by any
GFOM in this regime.

This chapter is organized as follows: Section 3.2 illustrates the setting introduced above in two examples;
Section 3.3 contains the statement of our general lower bounds; Section 3.4 applies these lower bounds to
the two examples; Section 3.5 presents an outline of the proof, deferring technical details to appendices.

3.2 Two examples

Example #1: M-estimation in high-dimensional regression and phase retrieval

Consider the high-dimensional regression problem. Regularized M-estimators minimize a cost

Ln(ϑ) :=
n∑
i=1

ℓ(yi; ⟨xi,ϑ⟩) + Ωn(ϑ) = ℓ̂n(y,Xϑ) + Ωn(ϑ) , (3.2)

Here ℓ : R×R→ R is a loss function, ℓ̂n(y, ŷ) :=
∑n
i=1 ℓ(yi, ŷi) is its empirical average, and Ωn : Rp → R is

a regularizer. It is often the case that ℓ is smooth and Ωn is separable, i.e., Ωn(ϑ) =
∑p
i=1 Ω1(ϑi). We will

assume this to be the case in our discussion.
The prototypical first order method is proximal gradient [166]:

θt+1 = ProxγtΩ1

(
θt − γt∇ϑℓ̂n(y,Xθt)

)
,
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ProxγΩ1
(y) := argmin

θ∈R

{
1

2
(y − θ)2 + γΩ1(θ)

}
.

Here (γt)t≥0 is a sequence of step sizes and ProxγΩ1
acts on a vector coordinate-wise. Notice that

∇ϑℓ̂n(y,Xθt) = XTs(y,Xθt) , s(h, ŷ)i ≡
∂ℓ

∂ŷi
(y,ŷi) . (3.3)

Therefore proximal gradient –for the cost function (3.2)– is an example of a GFOM. Similarly, mirror descent
with a separable Bregman divergence and accelerated proximal gradient methods are easily shown to fit in
the same framework.

Among the countless applications of regularized M-estimation, we will focus on the sparse phase retrieval
problem. We want to reconstruct a sparse signal θ ∈ Rp but only have noisy measurements of the modulus
|⟨θ,xi⟩|; that is, we lose the ‘phase’ of these projections. (We will consider for simplicity the case of a
real-valued signal, but the generalization of our results to the complex case should be immediate.)

As a concrete model, we will assume that number of non-zero entries of θ is ∥θ∥0 ≤ s0. From an
information-theoretic viewpoint, it is known that θ can be reconstructed accurately as soon as the number
of measurements satisfies n ≥ Cs0 log(p/s0), with C a sufficiently large constant [130]. Several groups have
investigated practical reconstruction algorithms by exploiting either semidefinite programming relaxations
[130] or first order methods [175, 46, 42]. A standard approach would be to apply a proximal gradient
algorithm to the cost function (3.2) with Ωn(ϑ) = λ∥ϑ∥1. However, all existing global convergence guarantees
for these methods require n ≥ Cs20 log p. Is the dependence on s20 due to a fundamental computational barrier
or an artifact of the theoretical analysis? Recently [179] presented partial evidence towards the possibility
of ‘breaking’ this barrier, by proving that a first order method can accurately reconstruct the signal for
n ≥ Cs0 log(p/s0), if it is initialized close enough to the true signal θ.

Example #2: Sparse PCA

In a simple model for sparse principal component analysis (PCA), we observe a matrix X = 1
nΛθT + Z ∈

Rn×p, where Λ ∈ Rn has entries (λi)i≤n
iid∼ N(0, 1), θ ∈ Rp is a sparse vector with s0 ≪ p non-zero entries,

and Z is a noise matrix with entries (zij)i≤n,j≤p
iid∼ N(0, 1/n). Given data X, we would like to reconstruct

the signal θ. From an information-theoretic viewpoint, it is known that accurate reconstruction of θ is
possible if n ≥ Cs0 log(p/s0), with C a sufficiently large constant [5].

A number of polynomial time algorithms have been studied, ranging from simple thresholding algorithms
[110, 67] to sophisticated convex relaxations [5, 135]. Among other approaches, one natural idea is to modify
the power iteration algorithm of standard PCA by computing

θt+1 = ctX
TXη(θt; γt) . (3.4)

Here (ct)t≥0 is a deterministic normalization, and η( · ; γ) is a thresholding function at level γ, e.g., soft
thresholding η(x; γ) = sign(x)(|x| − γ)+. It is immediate to see that this algorithm is a GFOM. More
elaborate versions of non-linear power iteration were developed, for example, by [113, 136], and are typically
equivalent to suitable GFOMs.

Despite these efforts, no algorithm is known to succeed unless n ≥ Cs20. Is this a fundamental barrier or
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a limitation of present algorithms or analysis? Evidence towards intractability was provided by [31, 38] via
reduction from the planted clique problem. Our analysis provides new evidence towards the same conclusion.

3.3 Main results

In this section we state formally our general results about high-dimensional regression and low-rank matrix
estimation. The next section will apply these general results to concrete instances. Throughout we make
the following assumptions:

A1. The functions F (1)
t , G

(2)
t , F∗ : Rr(t+1)+1 → R, F (2)

t , G
(1)
t , G∗ : Rr(t+1) → R, are Lipschitz continuous,

with the F ’s indexed by t ≥ 0 and the G’s indexed by t ≥ 0.

A2. The covariates matrix X (for high-dimensional regression) or the noise matrix Z (for low-rank estima-
tion) have entries xij

iid∼ N(0, 1/n), zij
iid∼ N(0, 1/n).

Also, we denote by Pq(Rk) the set of probability distributions with finite q-th moment on Rk and Pc(Rk)
those with compact support. We say a function f : Rk → R is pseudo-Lipschitz of order 2 if there exists
constant C such that |f(x) − f(x′)| ≤ C(1 + ∥x∥ + ∥x′∥)∥x − x′∥ for all x,x′ ∈ Rk. We call a function
ℓ : (Rk)2 → R a quadratically-bounded loss if it is non-negative and pseudo-Lipschitz of order 2 and there
exists C > 0 such that for all x,x′,d ∈ Rk we have |ℓ(x,d)−ℓ(x′,d)| ≤ C(1+

√
ℓ(x,d)+

√
ℓ(x′,d))∥x−x′∥.

3.3.1 High-dimensional regression

We make the following additional assumptions for the regression problem:

R1. We sample {(wi, ui)}i≤n iid∼ µW,U , {(θi, vi)}i≤p iid∼ µΘ,V for µΘ,V , µW,U ∈P2(R2).

R2. There exists a measurable function h : R2 → R such that yi = h(xT
i θ, wi). Moreover, there exists

constant C such that |h(x,w)| ≤ C(1 + |x|+ |w|) for all x,w.

Notice that the description in terms of a probability kernel P(yi ∈ · |xT
i θ) is equivalent to the one in terms

of a ‘noisy’ function yi = h(xT
i θ, wi) in most cases of interest.

Our lower bound is defined in terms of a one-dimensional recursion. Let (Θ, V ) ∼ µΘ,V . Let mmseΘ,V (τ2)

be the minimum mean square error for estimation of Θ given observations V and Θ+ τG where G ∼ N(0, 1)

independent of Θ. Set τ2Θ = E[Θ2] and τ20 =∞, and define recursively

τ̃2s =
1

δ
mmseΘ,V (τ2s ), σ2

s =
1

δ
(τ2Θ −mmseΘ,V (τ2s )) ,

1

τ2s+1

=
1

τ̃2s
E
[
E[G1|Y,G0, U ]2

]
,

(3.5)

where Y = h(σsG0 + τ̃sG1,W ) and the expectation is with respect to G0, G1
iid∼ N(0, 1) and (W,U) ∼ µW,U

independent.

Theorem 3.3.1. Under assumptions A1, A2, R1, R2 in the high-dimensional regression model and under
the asymptotics n, p → ∞, n/p → δ ∈ (0,∞), let θ̂t be output of any GFOM after t iterations (2t − 1
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matrix-vector multiplications). Then

lim
n→∞

1

p
∥θ̂t − θ∥22 ≥ mmseΘ,V (τ2t ) .

More generally, for any quadratically-bounded loss ℓ : R2 → R≥0,

lim
n→∞

1

p

p∑
j=1

ℓ(θj , θ̂
t
j) ≥ inf

θ̂( · )
E
{
ℓ(Θ, θ̂(Θ + τtG,V ))

}
, (3.6)

where (Θ, V ) ∼ µΘ,V independent of G ∼ N(0, 1), and the infimum on the right-hand side is over measurable
functions θ̂ : R2 → R. The limits are in probability and to a constant, and they are guaranteed to exist. For
all ϵ > 0, there exist GFOMs which satisfy these bounds to within tolerance ϵ.

3.3.2 Low-rank matrix estimation

We make the following additional assumption:

M1. We sample {(Λi,ui)}i≤n iid∼ µΛ,U and {(θj ,vj)}j≤p iid∼ µΘ,V for µΛ,U , µΘ,V ∈P2(R2r).

Again, our lower bound is defined in terms of recursion, which this time is defined over positive semidef-
inite matrices Qt, Q̂t ∈ Rr×r, Qt, Q̂t ⪰ 0. Set Q̂0 = 0, and define recursively

Qt+1 = V Λ,U (Q̂t) , Q̂t =
1

δ
V Θ,V (Qt) , (3.7)

where we define the second moment of the conditional expectation V Θ,V : Rr×r → Rr×r by

V Θ,V (Q) := E
{
E[Θ|Q1/2Θ+G = Y ;V ]E[Θ|Q1/2Θ+G = Y ;V ]T

}
,

and analogously for V Λ,U (Q̂). Here the expectation is with respect to (Θ,V ) ∼ µΘ,V and an independent
Gaussian vector G ∼ N(0, Ir). Notice in particular that E{ΘΘT}−V Θ,V (Q) is the vector minimum mean
square error when Θ is observed in Gaussian noise with covariance Q−1. For r = 1, Eq. (3.7) is a simple
scalar recursion.

Theorem 3.3.2. Under assumptions A1, A2, M1 in the low-rank matrix estimation model and under the
under the asymptotics n, p→∞, n/p→ δ ∈ (0,∞), let θ̂t be output of any GFOM after t iterations (2t− 1

matrix-vector multiplications). Then

lim
n→∞

1

p
∥θ̂t − θ∥2F ≥ E{∥Θ∥2} − TrV Θ,V (Qt) .

More generally, for any quadratically-bounded loss ℓ : R2r → R≥0,

lim
n→∞

1

p

p∑
j=1

ℓ(θj , θ̂
t
j) ≥ inf

θ̂( · )
E
{
ℓ(Θ, θ̂(Q

1/2
t Θ+G,V ))

}
, (3.8)

where the infimum on the right-hand side is over functions θ̂ : Rr → Rr. The limits are in probability and to
a constant, and they are guaranteed to exist. As above, for all ϵ > 0 there exist GFOMs which satisfy these
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bounds to within tolerance ϵ.

3.3.3 Discussion

Our motivations are similar to the ones for statistical query (SQ) lower bounds [89, 90]: we want to provide
estimation lower bounds under a restricted computational model, that are sensitive to the data distribution.
However the scope of our approach is significantly different from SQ algorithms: the latter can query data
distributions and compute approximate expectations with respect to that distribution. In contrast, our
algorithms work with a fixed sample (the data matrix X and responses y), which is queried multiple times.
These queries can be thought as weighted averages of both rows and columns of X and, as such, cannot be
simulated by the SQ oracle. For instance, the proximal gradient method or the nonlinear power iteration of
Section 3.2 cannot be framed as a SQ algorithms.

The lower bounds of Theorems 3.3.1 and 3.3.2 are satisfied with equality by a specific first order method
that is an approximate message passing (AMP) algorithm, with Bayes updates. This can be regarded as a
version of belief propagation (BP) for densely connected graphs [120], or an iterative implementation of the
TAP equations from spin glass theory [140].

Our proof builds on the asymptotically exact analysis of AMP algorithms developed in [37, 24, 105, 32].
However we need to overcome three technical obstacles: (1) Show that any GFOM can be reduced (in a
suitable sense) to a certain AMP algorithms, whose behavior can be exactly tracked. (2) Show that Bayes-
AMP is optimal among all AMP algorithms. We achieve this goal by considering an estimation problem on
trees and showing that, in a suitable large degree limit, it has the same asymptotic behavior as AMP on the
complete graph. On trees it is immediate to see that BP is the optimal local algorithm. (3) We need to prove
that the asymptotic behavior of BP for trees of large degree is equivalent to the one of Bayes-AMP on the
original problem. This amounts to proving a Gaussian approximation theorem for BP. While similar results
were obtained in the past for discrete models [177, 158], the current setting is technically more challenging
because the underlying variables θi are continuous and unbounded.

While the line of argument above is –in hindsight– very natural, the conclusion is broadly useful. For
instance, [8] study a class of of message passing algorithms inspired to replica symmetry breaking and survey
propagation [141], and observe that they do not perform better than Bayes AMP. These algorithms are
within the scope of our Theorem 3.3.2, which implies that indeed they cannot outperform Bayes AMP, for
any constant number of iterations.

Finally, a sequence of recent papers characterize the asymptotics of the Bayes-optimal estimation error
in the two models described above [125, 20]. It was conjectured that, in this context, no polynomial-time
algorithm can outperform Bayes AMP, provided these algorithms have access to an arbitrarily small amount
of side information.2 Theorems 3.3.1 and 3.3.2 establish this result within the restricted class of GFOMs.

3.4 Applying the general lower bounds

In our two examples, we will refer to the sets Bp0(k) ⊂ Rp of k-sparse vectors and Bp2(R) ⊂ Rp of vectors
with ℓ2-norm bounded by R.

2Concretely, side information can take the form v = ηθ + g for η > 0 arbitrarily small, g ∼ N(0, Ip)
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Example #1: Sparse phase retrieval

For the reader’s convenience, we follow the standard normalization in phase retrieval, whereby the ‘sensing
vectors’ (i.e. the rows of the design matrix) have norm concentrated around one. In other words, we observe
yi ∼ p( · |x̃T

i θ)dy, where x̃i ∼ N(0, Ip/p).
In order to model the phase retrieval problem, we assume that the conditional density p( · | · ) satisfies

the symmetry condition p(y|x) = p(y| − x). In words: we only observe a noisy version of the absolute
value |⟨x̃i,θ⟩|. An important role is played by the following critical value of the number of observations per
dimension

δsp :=

(∫
R

EG[p(y|G)(G2 − 1)]

EG[p(y|G)]
dy

)−1

. (3.9)

Here expectation is with respect to G ∼ N(0, 1). It was proved in [146] that, if ∥θ∥2 =
√
p and n > (δsp+η)p,

for some η bounded away from zero, then there exists a simple spectral estimator θ̂sp that achieves weak
recovery, i.e., a positive correlation with the true signal. Namely, |⟨θ̂sp,θ⟩|

∥θ̂sp∥2∥θ∥2
is bounded away from zero as

p, n→∞.
In the case of a dense signal θ and observation model yi = |x̃T

i θ|+wi, wi ∼ N(0, σ2), the oversampling
ratio δsp is known to be information-theoretically optimal: for n < (δsp − η)p no estimator can achieve a
correlation that is bounded away from 0 [146]. On the other hand, if θ has at most pε nonzero entries,
it is information-theoretically possible to reconstruct it from δ > Cε log(1/ε) phaseless measurements per
dimension [130].

Our next result implies that no GFOM can achieve reconstruction from O(ε log(1/ε)) measurements per
dimension, unless it is initialized close enough to the true signal. In order to model the additional information
provided by the initialization we assume to be given

v =
√
α θ/∥θ∥2 +

√
1− αg̃, (g̃i)i≤p

iid∼ N(0, 1/p), . (3.10)

Notice that with this normalization ∥v∥2 concentrates tightly around 1, and
√
α can be interpreted as the

cosine of the angle between θ and v.

Corollary 3.4.1. Consider the phase retrieval model, for a sequence of deterministic signals θ ∈ Rp, and
let T (ε,R) := Bp0(pε) ∩ Bp2(R). Assume the noise kernel p( · |x) to satisfy the conditions of Theorem 3.3.1
and to be be twice differentiable with respect to x.

Then, for any δ < δsp, there exists α∗ = α∗(δ, ε) > 0 and C∗ = C∗(δ, ε) such that, if α ≤ α∗, then

sup
t≥0

lim
n,p→∞

inf
θ∈T (ε,

√
p)
E
⟨θ, θ̂t⟩
∥θ∥2∥θ̂t∥2

≤ C∗
√
α . (3.11)

The same conclusion holds if θ is drawn randomly with i.i.d. entries θi ∼ µθ := (1− ε)δ0 + (ε/2)(δµ + δ−µ),
µ = 1/

√
ε.

Example #2: Sparse PCA

For ease of interpretation, we assume the observation model X̃ = Λθ
T
+ Z̃, where (z̃ij)i≤n,j≤p ∼ N(0, 1)

and (λi)i≤n ∼ N(0, 1). Equivalently, conditional on θ, the rows of X̃ are i.i.d. samples x̃i ∼ N(0,Σ),
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Σ = Ip + θθ
T
. We also assume to have access to an initialization v correlated with θ, as per Eq. (3.10). In

order to apply Theorem 3.3.2, we choose a specific distribution for the spike. Defining θ = θ
√
p, we assume

that the entries of θ follow a three-points sparse distribution (θi)i≤p ∼ µθ := (1− ε)δ0 + (ε/2)(δ+µ + δ−µ).
The next lemma specializes Theorem 3.3.2.

Lemma 3.4.1. Assume the sparse PCA model with the distribution of θ given above. Define (qt)t≥0 by

qt+1 =
V±(qt + α̃)

1 + V±(qt + α̃)
, q0 = 0 , (3.12)

V±(q) := e−δqµ
2

µ2ε2E
{

sinh(µ
√
δqG)2

1− ε+ εe−δqµ2/2 cosh(µ
√
δqG)

}
, (3.13)

where α̃ = α/(µ2ε(1− α)). Then, for any GFOM

lim
n,p→∞

⟨θ, θ̂t⟩
∥θ∥2∥θ̂t∥2

≤
√
V±(qt + α̃)

µ2ε
. (3.14)

The bound in the last lemma holds for random vectors θ with i.i.d. entries from the three-points
distribution. As a consequence, it implies a minimax bound for non-random vectors θ with given ℓ2-norm
and sparsity. We state this bound in the corollary below. In order to develop explicit expressions, we analyze
the recursion of Eqs. (3.12), (3.13).

Corollary 3.4.2. Assume the sparse PCA model, for θ ∈ Rp a deterministic vector and Λ, Z̃ random, and
consider the parameter space T (ε,R) := Bp0(pε) ∩Bp2(R).

(a) If R2 < 1/
√
δ, then there exists α∗ = α∗(R, δ, ε), C∗ = C∗(R, δ, ε) such that, for α < α∗, and any

GFOM

sup
t≥0

lim
n,p→∞

inf
θ∈T (ε,R)

E
⟨θ, θ̂t⟩
∥θ∥2∥θ̂t∥2

≤ C∗
√
α . (3.15)

(b) If R2 <
√
(1− ε)/4δ, then the above statement holds with α∗ =

(
ε
4δ ∧ 1

2

)
, C∗ = 3/R2.

In words, the last corollary implies that for R2δ < 1, no estimator achieves a non-vanishing correlation
with the true signal θ, unless sufficient side information about θ is available. Notice that for R2δ = 1 is
the threshold above which the principal eigenvector of the empirical covariance X̃TX̃/n becomes correlated
with θ. Hence, our result implies that, simple PCA fails, then every GFOM will fail.

Viceversa, if simple PCA succeed, then it can be implemented via a GFOM, provided arbitrarily weak
side information if available. Indeed, assume side information v = ηθ + g, with g ∼ N(0, Ip), and an
η arbitrarily small constant. Then the power method initialized at v converges to an estimate that has
correlation with θ bounded away from zero in O(log(1/η)) iterations.

3.5 Proof of main results

In this section, we prove Theorems 3.3.1 and 3.3.2 under stronger assumptions than in their statements. In
the high-dimensional regression model, these assumptions are as follows.



CHAPTER 3. THE ESTIMATION ERROR OF GENERAL FIRST ORDER METHODS 34

R3. Given µΘ,V ∈ Pc(R2) and µW ,U ∈ P4(Rk × R) for some k ≥ 1, we sample {(θi, vi)}i≤p iid∼ µΘ,V ,
{(wi, ui)}i≤n iid∼ µW ,U .

R4. There exists Lipschitz function h : R×Rk → R such that yi = h(xT
i θ,wi). Measure µW ,U has regular

conditional probability distribution µW |U (u, ·) such that, for all fixed x, u, the distribution of h(x,W )

when W ∼ µW |u(u, ·) has positive and bounded density p(y|x, u) with respect Lebesgue measure.
Further, ∂kx log p(y|x, u) for 1 ≤ k ≤ 5 exists and is bounded.

In the low-rank matrix estimation model, this assumption is as follows.

M2. Given µΛ,U , µΘ,V ∈Pc(R2r), we sample {(Λi,ui)}i≤n iid∼ µΛ,U , {(θj ,vj)}j≤p iid∼ µΘ,V .

In Appendix B.5, we show that Theorem 3.3.1 (resp. Theorem 3.3.2) under assumptions R3 and R4 (resp.
M2) implies the theorem under the weaker assumptions R1 and R2 (resp. M1).

3.5.1 Reduction of GFOMs to approximate message passing algorithms

Approximate message passing (AMP) algorithms are a special class of GFOMs that admit an asymptotic
characterization called state evolution [24]. We show that, in both models we consider, any GFOM is
equivalent to an AMP algorithm after a change of variables.

An AMP algorithm is defined by sequences of Lipschitz functions (ft : Rr(t+1)+1 → Rr)t≥0, (gt :

Rr(t+1) → Rr)t≥1. It generates sequences (at)t≥1, (bt)t≥1 of matrices in Rp×r and Rn×r, respectively,
according to

at+1 = XTft(b
1, . . . , bt;y,u)−

t∑
s=1

gs(a
1, . . . ,as;v)ξTt,s,

bt = Xgt(a
1, . . . ,at;v)−

t−1∑
s=0

fs(b
1, . . . , bs;y,u)ζT

t,s,

(3.16)

with initialization a1 = XTf0(y,u). Here (ξt,s)1≤s≤t, (ζt,s)0≤s<t are deterministic r × r matrices. The
we refer to the recursion (3.16) as to an AMP algorithm if only if the matrices (ξt,s)1≤s≤t, (ζt,s)0≤s<t are
determined by the functions (ft)t≥0, (gt)t≥1 in a specific way, which depends on the model under consider-
ation, and we describe in Appendix B.2. For this special choice of the matrices (ξt,s)1≤s≤t, (ζt,s)0≤s<t, the
iterates at, bt are asymptotically Gaussian, with a covariance that can be determined via the state evolution
recursion.

The next lemma, proved in Appendix B.2, makes this precise and describes the state evolution of the
resulting AMP algorithm.

Lemma 3.5.1. Under assumptions A1, A2, R3, R4 (for high-dimensional regression) or assumptions A1,
A2, M2 (for low-rank matrix estimation), there exist Lipschitz functions (ft)t≥0, (gt)t≥1 as above and (φt :

Rr(t+1) → R)t≥1, (ϕt : Rr(t+1)+1 → R)t≥1, such that the following holds. Let (ξt,s)1≤s≤t, (ζt,s)0≤s<t be r × r
matrices determined by the general AMP prescription (see Appendix B.2), and define {as, bs}s≥0 via the
AMP algorithm (3.16). Then we have

vt = φt(a
1, . . . ,at;v), t ≥ 1,
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ut = ϕt(b
1, . . . , bt;y,u), t ≥ 1.

Further, state evolution determines two collections of of r × r matrices (T s,t)s,t≥1, (αt)t≥1 such that for all
pseudo-Lipschitz functions ψ : Rr(t+2) → R of order 2,

1

p

p∑
j=1

ψ(a1
j , . . . ,a

t
j ,vj ,θj)

p→ E[ψ(α1Θ+Z1, . . . ,αtΘ+Zt,V ,Θ)], (3.17)

where (Θ,V ) ∼ µΘ,V independent of (Z1, . . . ,Zt) ∼ N(0,T [1:t]). Here T [1:t] ∈ Rtr×tr is a positive semi-
definite block matrix with block (s, s′) given by T s,s′ .3

Lemma 3.5.1 implies that the estimator θ̂t in Theorem 3.3.1 and 3.3.2 can alternatively be viewed as a
Lipschitz function g∗ : Rr(t+1) → Rr of the AMP iterates (as)s≤t and side information v, applied row-wise.
Thus, ℓ(θj , θ̂tj) can be viewed as a pseudo-Lipschitz function of order 2 applied to (asj)s≤t,vj ,θj ; namely,
ℓ(θj , g∗((a

s
j)s≤t,vj)). Then, Lemma 3.5.1 implies that the limits in Theorems 3.3.1 and 3.3.2 exist and have

lower bound
inf Rℓ(g∗, (αs), (T s,s′)) := inf E[ℓ(Θ, g∗(α1Θ+Z1, . . . ,αtΘ+Zt,V ))], (3.18)

where the infimum is taken over Lipschitz functions g∗ and matrices (αs), (T s,s′) generated by the state
evolution of some AMP algorithm. This lower bound is characterized in the following sections.

3.5.2 Models and message passing on the computation tree

We introduce two statistical models on trees and a collection of algorithms which correspond, in a sense
we make precise, to the high-dimensional regression and low-rank matrix estimation models, and AMP
algorithms. We derive lower bounds on the estimation error in these models using information-theoretic,
rather than algorithmic, techniques. We then transfer these to lower bounds on (3.18). The models are
defined using an infinite connected tree T = (V,F , E) consisting of infinite collections of variable nodes V,
factor nodes F , and edges E . Factor nodes have degree p and have only variables nodes as neighbors, and
variable nodes have degree n and have only factor nodes as neighbors. These properties define the tree
uniquely up to isomorphism. We denote the set of neighbors of a variable v by ∂v, and similarly define ∂f .
We call T the computation tree.

The statistical models are joint distributions over random variables associated to the nodes and edges
of the computation tree.

High-dimensional regression on the computation tree. The random variables {(θv, vv)}v∈V
iid∼ µΘ,V ,

{(wf , uf )}f∈F
iid∼ µW ,U , and {xfv}(f,v)∈E

iid∼ N(0, 1/n) are generated independently. We assume µΘ,V ,
µW ,U are as in assumption R3. We define yf = h(

∑
v∈∂f xfvθv,wf ) for h as in assumption R4. For each

v ∈ V, our objective is to estimate the coefficient θv from data (yf , uf )f∈F , (vv)v∈V , and (xfv)(f,v)∈E .

Low-rank matrix estimation on the computation tree. The random variables {(θv,vv)}v∈V
iid∼ µΘ,V ,

{(Λf ,uf )}f∈F , and {zfv}(f,v)∈E
iid∼ N(0, 1/n) are generated independently. We assume µΛ,U , µΘ,V are

as in assumption M2. For each v ∈ V, our objective is to estimate θv from data (xfv)(f,v)∈E , (vv)v∈V ,
and (uf )f∈F .

3We emphasize that the construction of all relevant functions and matrices depend on the model. We describe these
constructions and prove Lemma 3.5.1 in Appendix B.2.
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When ambiguity will result, we will refer to the models of Section 3.3 as high-dimensional regression and
low-rank matrix estimation on the graph.4 As on the graph, we introduce dummy variables (yf )f∈F in the
low-rank matrix estimation problem on the computation tree.

To estimate θv, we introduce the class of message passing algorithms. A message passing algorithm is
defined by sequences of Lipschitz functions (ft : Rr(t+1)+1 → Rr)t≥0, (gt : Rr(t+1) → Rr)t≥1. For each edge
(f, v) ∈ E , it generates sequences (atv→f )t≥1, (qtv→f )t≥1, (btf→v)t≥1, and (rtf→v)t≥0 of vectors in Rr, called
messages, according to

at+1
v→f =

∑
f ′∈∂v\f

xf ′vr
t
f ′→v, rtf→v = ft(b

1
f→v, . . . , b

t
f→v; yf ,uf ),

btf→v =
∑

v′∈∂f\v

xfv′q
t
v′→f , qtv→f = gt(a

1
v→f , . . . ,a

t
v→f ;vv),

(3.19)

with initialization r0f→v = f0(yf ,uf ) and a1
v→f =

∑
f ′∈∂v\f xf ′vr

0
f ′→v. We also define for every variable

and factor node the vectors

at+1
v =

∑
f∈∂v

xfvr
t
f→v, btf =

∑
v∈∂f

xfvq
t
v→f . (3.20)

These are called beliefs. The vector θv is estimated after t iterations by θ̂tv = g∗(a
1
v, . . . ,a

t
v;vv).

Message passing algorithms on the computation tree correspond to AMP algorithms on the graph in
the sense that their iterates are asymptotically characterized by the same state evolution.

Lemma 3.5.2. In both the high-dimensional regression and low-rank matrix estimation problems on the tree,
the following is true. For any Lipschitz functions (ft)t≥0, (gt)t≥1, there exist collections of r × r matrices
(T s,t)s,t≥1, (αt)t≥1 such that for any node v chosen independently of the randomness on the model, fixed
t ≥ 1, and under the asymptotics n, p → ∞, n/p → δ ∈ (0,∞), the message passing algorithm (3.19)
generates beliefs at v satisfying

(a1
v, . . . ,a

t
v,vv,θv)

W→ (α1Θ+Z1, . . . ,αtΘ+Zt,V ,Θ),

where (Θ,V ) ∼ µΘ,V independent of (Z1, . . . ,Zt) ∼ N(0,T [1:t]), and W→ denotes convergence in the Wasser-
stein metric of order 2 (see Appendix B.1). Moreover, the matrices (T s,t)s,t≥1, (αt)t≥1 agree with those in
Lemma 3.5.1 when the functions (ft)t≥0, (gt)t≥1 also agree.

We prove Lemma 3.5.2 in Appendix B.3. Lemma 3.5.2 and the properties of convergence in the Wasser-
stein metric of order 2 (see Lemma B.1.2, Appendix B.1) imply that for any message passing estimator θ̂tv

and loss ℓ, the risk E[ℓ(θv, θ̂tv)] = E[ℓ(θv, g∗(a1
v, . . . ,a

t
v;vv)] converges to Rℓ(g∗, (αs), (T s,s′)), in agreement

with the asymptotic error of the corresponding AMP estimator on the graph.
On the computation tree, we may lower bound this limiting risk by information-theoretic techniques,

as we now explain. By induction, the estimate θ̂tv is a function only of observations corresponding to edges
and nodes in the ball of radius 2t − 1 centered at v on the computation tree. We denote the observations
in this local neighborhood by Tv,2t−1. We lower bound the risk of θ̂tv by the optimal risk of any measurable

4This terminology is motivated by viewing the models of Section 3.3 as equivalent to the tree-based models except that they
are defined with respect to a finite complete bipartite graph between factor and variable nodes.
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estimator, possibly intractable, which depends only on Tv,2t−1; we call this the local Bayes risk. The following
lemma characterizes the local Bayes risk.

Lemma 3.5.3. Consider a quadratically-bounded loss ℓ : R2r → R≥0. In the high-dimensional regression
(resp. low-rank matrix estimation) model on the computation tree and under the asymptotics n, p → ∞,
n/p→ δ ∈ (0,∞),

lim inf
n→∞

inf
θ̂(·)

E[ℓ(θv, θ̂(Tv,2t−1))] ≥ R∗,

where the infimum is over all measurable functions of Tv,2t−1, and R∗ is equal to the right-hand side of
Eq. (3.6) (resp. Eq. (3.8)).

We prove Lemma 3.5.3 in Appendix B.4. Combining Lemma 3.5.3 with the preceding discussion, we
conclude that Rℓ(g∗, (αs), (T s,s′)) ≥ R∗ for all Lipschitz functions g∗ and matrices (αs), (T s,s′) generated
by the state evolution of some message passing or, equivalently, by some AMP algorithm. The bounds (3.6)
and (3.8) now follow. Moreover, as we show in Appendix B.6, the bounds (3.6) and (3.8) are achieved by a
certain AMP algorithm. The proof is complete.



Chapter 4

A proof for GFOM via orthogonalization

4.1 Summary of contribution

In Chapter 3 we introduced a class of ‘generalized first order methods’ (GFOM) to perform estimation
efficiently. Informally, GFOMs proceed iteratively. At time t, the state of the algorithm is given by order t
vectors of dimension n or d (which we can think of as estimates of θ). A new vector is computed by applying
a nonlinear function to these vectors (independent of the data) and then multiplying the result by X or XT.
This class of algorithm is broad enough to include classical first order methods from optimization theory
[162], such as gradient descent, accelerated gradient descent, and mirror descent with respect to a broad
class of objective functions (both convex and nonconvex).

Given this setting, a natural question is:

What is the optimal estimation algorithm among all GFOMs?

This question was answered in the last chapter under the assumption that the noise matrix W (in the case
of low-rank matrix estimation) or the covariates matrix X (for regression in generalized linear models) has
i.i.d. normal entries, and under some regularity assumptions on the algorithm iterations. Namely, in Chapter
3 we proves that in the proportional asymptotics n, d → ∞, n/d → δ ∈ (0,∞), optimal estimation error is
achieved, for any fixed number of iterations t, by the Bayes approximate message passing (AMP) algorithm.
Also this algorithm choice is unique up to reparametrizations.

The proof of Chapter 3 was based on three steps:

(I) Reduction. Any GFOM can be simulated by a certain AMP algorithm, with the same number of
matrix-vector multiplications, plus (eventually) a post-processing step that is independent of data X.

(II) Tree model. The estimation error achieved by an AMP algorithm after t iterations is asymptotically
equivalent to the one achieved by a corresponding message passing algorithm for a certain estimation
problem on a tree graphical model T after t-iterations (this algorithm is t-local on the tree).

(III) Optimality on trees. Belief propagation is the optimal t-local algorithm for the estimation problem on
T . As a consequence, Bayes AMP is the optimal first order method in the original problem (since it
achieves the same accuracy as belief propagation in the tree model).

38
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The main objective of this note is to present a simpler proof of the optimality of Bayes AMP that does
not take the detour of constructing the equivalent tree model. Namely, steps (II) and (III) are replaced by
the following.

(II ′) Reduction to orthogonal AMP. Any AMP algorithm can be simulated by a certain orthogonal AMP
algorithm, which, after t iterations, generates t vectors in Rd or Rn whose projections orthogonal to
θ are orthonormal. The algorithm output at iteration t is a function of these t vectors, which is
independent of data X.

(III ′) Optimality of Bayes AMP. The asymptotic estimation error of the orthogonal AMP estimator is char-
acterized via state evolution [24]. By minimizing this error among orthogonal AMP algorithms, we
obtain the error of Bayes AMP.

This proof strategy avoids several technicalities that arise because of the tree equivalence steps and the
analysis of belief propagation. Also, it is easier to generalize to different settings, and indeed we establish
the following generalizations of the result of Chapter 3:

• We treat the case of noise matrices W (for low-rank matrix estimation) or X (for regression) with
independent entries, satisfying a bound on the fourth moment. In contrast, the results of [50] were
limited to Gaussian matrices.

• In the Gaussian case, we cover the case in which the first order method applies, at each iteration, a
general Lipschitz continuous nonlinearity to previous iterates. The only limitation is that this nonlin-
earity should be independent from the data matrix X. In contrast, the results of [50] were limited to
separable nonlinearities (i.e. nonlinearities that act row-wise to the previous iterates, see below).

In order to motivate our work, we will begin in Section 4.2 by presenting a numerical experiment. We
will carry out this experiment in the context of phase retrieval, since a large number of first order methods
have been developed for this problem.

We will next pass to explaining our new optimality results. In order to present the new proof technique
in the most transparent fashion, we will devote most of the main text to the simplest possible example,
namely estimating a rank-one symmetric matrix from a noisy observation. We will describe the setting and
state our results in this context in Section 4.3. We then prove this result in Section 4.4 for the case of
separable nonlinearities. Finally section 4.5 presents our results for the case of regression. The appendices
presents technical proofs for non-separable nonlinearities and for the regression setting. These follow the
same strategy as the proof in the main text with some modifications.

4.2 An experiment: benchmarking algorithms for phase retrieval

As a motivating example, we consider noiseless phase retrieval, in which we take measurements yi of an
unknown signal θ ∈ Rd according to:

yi = ⟨xi,θ⟩2, i ∈ {1, · · · , n}.

We let X ∈ Rn×d with the i-th row being xi and y ∈ Rn with the i-th coordinate being yi. We will consider
the simple example of random measurements xi

iid∼ N(0, Id/n) and assume the normalization ∥θ∥2/d =
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1 + od(1). Given (y,X), our goal is to recover θ. Since the signal θ is real, ‘sign retrieval’ would be a more
appropriate name here. We expect that an experiment with complex signal would yield similar results.

Needless to say, first order methods (with spectral initialization or not) were studied in a substantial
body of work, see among others [175, 46, 58, 42, 196, 74, 145, 195, 134, 138, 85, 147].

Apart from illustrating the content of our results, this section also demonstrates a practical use of these
results to benchmarking algorithms.

4.2.1 Spectral initialization

As is common in the literature, we consider first order methods with a spectral initialization. Since our main
objective is to compare various first order methods, we will use a common spectral initialization developed
in [145], which is defined as follows.

We define Dn ∈ Rd×d as follows:

Dn :=

n∑
i=1

T (yi)xixT
i ,

where T : R→ R is a preprocessing function given in [145, Eq. (137)]:

T (y) = y − 1

y +
√
1 + ε− 1

. (4.1)

Here, ε > 0 can be taken arbitrarily, but in simulations we fix ε = 10−3. We then use the initialization
θ0 :=

√
dv1(Dn), where v1(Dn) denotes the leading eigenvector of Dn. Without loss of generality, we

assume ⟨θ0,θ⟩ ≥ 0 (the overall sign of θ cannot be estimated). As shown in [145], this initialization is
optimal in the following sense. Consider n, d → ∞, with n/d → δ. For δ > 1 + ε, θ0 achieves a positive
correlation with θ, with probability converging to one as n, d → ∞. For δ < 1, no estimator can achieve a
positive correlation.

In fact, for any δ > 1, the correlation between θ0 and θ converges in probability to a deterministic value
that is given as follows. For λ ∈ (1,∞), we define the functions

ϕ(λ) := λE
[ T (G2)G2

λ− T (G2)

]
, ψ(λ) :=

λ

δ
+ λE

[ T (G2)

λ− T (G2)

]
,

where expectation is with respect to G ∼ N(0, 1). We let λ̄ = argminλ≥1 ψ(λ) and, for λ ∈ (1,∞), define
ζ(λ) := ψ(max(λ, λ̄)). Denote by λ∗ the unique solution of the equation ζ(λ) = ϕ(λ) on (1,∞). Finally, let
a ≥ 0 be given by

a2 =

1
δ − E

[
T (G2)2

(λ∗−T (G2))2

]
1
δ + E

[
T (G2)2(G2−1)
(λ∗−T (G2))2

] .
Then, [145, Lemma 2] proves that |⟨θ,θ0⟩|/d converges to a as n, d → ∞. Further, the approximate joint
distribution of these vectors is given by θ0 ≈ aθ +

√
1− a2g, in the sense that, for any Lipschitz function
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ψ : R→ R,

p-lim
n,d→∞

1

d

d∑
i=1

ψ
(
θ0i − s aθi

)
= E

{
ψ(
√
1− a2G)

}
. (4.2)

(This follows from the convergence of the correlation |⟨θ,θ0⟩|/d, together with rotational invariance.). Here,
p-lim denotes convergence in probability, g ∼ N(0, Id) and is independent of θ. Finally, [147] shows that
initializing AMP at θ0 is (asymptotically) equivalent to running a first order method from a warm start
initialization independent of θ0, and hence the analysis of the next sections apply to the present case.

4.2.2 First order methods

We will consider three specific GFOMs for phase retrieval. GFOMs will only be introduced formally in
Section 4.3 (for low-rank matrix estimation) and Section 4.5 (for regression, including phase retrieval as a
special case). For this section, it is sufficient to say that GFOMs operate at each iteration by performing
multiplication by X or XT plus, eventually, applying a suitable nonlinear operation that is independent of
X.

In the next subsection we will implement the algorithms listed below and compare their estimation error
with the minimum error among all GFOMs.

Bayes AMP

Bayes AMP is a special type of AMP algorithm and fits the general framework of [24]. The theory presented
in Section 4.5 suggests that it is indeed optimal among all GFOMs. A detailed description and analysis of
the Bayes AMP for phase retrieval is carried out in [147]. Since the precise definition is somewhat technical
and not needed for the rest of the paper, we omit it here and refer to [147].

Remark 4.2.1. It is worth clarifying that —despite the name— Bayes AMP does not rely on Bayesian
assumptions.

More precisely, the definition Bayes AMP requires specifying a nominal distribution µAMP
Θ for the

entries of the true signal θ. Here, we are assuming θ arbitrary (either deterministic or random) and such
that ∥θ∥22/d = 1+ od(1). By rotational invariance of the distribution of the covariates xi, we can achieve at
any such θ the same error as if θ was uniformly distributed over the sphere of radius ∥θ∥2. For large d, this
is achieved by setting µAMP

Θ the standard normal distribution, which is what we do here.

Gradient descent

If we attempt to minimize the ℓ2 loss on the training dataset, we can derive the corresponding gradient
descent algorithm:

θt+1 = θt +
4ηδ2

n
XT(y − |Xθt|2)⊙ (Xθt),

where η > 0 is the step size, |Xθt|2 ∈ Rn is the vector whose i-th coordinate is ⟨xi,θt⟩2, and ⊙ denotes
entrywise multiplication.
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Bayes AMP Gradient descent Prox-linear 1 step prox-linear TAF

Wall clock time 1.83× 10−2 6.63× 10−3 5.87× 101 6.23× 10−3 7.43× 10−3

Table 4.1: Averaged wall clock time for different algorithms.

Prox-linear algorithm

The prox-linear algorithm was proposed in [74]. The original algorithm sets L := 2∥X∥2op and proceeds by
solving a sequence of sub-problems:

θt+1 = argminϑ∈Rd

{
L

2
∥ϑ− θt∥22 +

n∑
i=1

∣∣⟨xi,θt⟩2 + 2⟨xi,θt⟩⟨xi,ϑ− θt⟩ − yi
∣∣} . (4.3)

Notice that this is not a GFOM, since each iteration requires solving an optimization problem, and does not
reduce to a pair of matrix-vector multiplications by XT and X.

In order to obtain a first order algorithm we replace the full optimization of the subproblem by a single
gradient step, with stepsize ξ:

θt+1 = θt + 2ξXT(st ⊙Xθt), sti := sign(yi − ⟨xi,θt⟩2) . (4.4)

We will carry out simulations both with the prox-linear algorithm and the 1-step prox-linear algorithm. It is
however important to keep in mind that the comparison between prox-linear algorithm and GFOMs is unfair
to GFOMs because each prox-linear step potentially requires a large number of matrix-vector multiplications.

Truncated amplitude flow (TAF)

Truncated amplitude flow (TAF) was proposed in [196], which claimed superior statistical performances with
respect to state of the art. Following [196], we fix parameters α = 0.6, γ = 0.7. For t ∈ N, we define the set

It :=
{
i ∈ [n] : |⟨xi,θt⟩| ≥ (1 + γ)−1√yi

}
.

At the (t+ 1)-th iteration, we perform the following update:

θt+1 = θt − α
∑
i∈It

(
⟨xi,θt⟩ −

√
yi sign(⟨xi,θt⟩)⟩

)
xi.

4.2.3 Simulation results

In our first set of simulations, we take d = 400, n ∈ {600, 1000}, and run reconstruction experiments
using each of the algorithms described above, averaging results over 50 independent trials. We compute the
correlation between the estimates produced by these algorithms and the true signal θ, and plot the results
in Figure 4.1, as a function of the number of iterations t ∈ {0, 1, · · · , 10}. We also plot the theoretical
prediction (cf. Theorem 4.5.1) for the maximum achievable correlation by any GFOM.

A few remarks are in order:

• While the theory developed below applies to n, d → ∞, n/d → δ, it appears to be fairly accurate
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Figure 4.1: Correlation |⟨θt,θ⟩|/∥θt∥2∥θ∥2 for various algorithms, as a function of the number of iterations,
for d = 400. All algorithms are GFOMs with the exception of prox-linear. Red dashed lines represent the
optimal correlation of Theorem 4.5.1.
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Figure 4.2: Performance of gradient descent and the one step prox-linear algorithm with t = 10 iterations as
a function of the step sizes. The x axis is the logarithm of the step size η (for gradient descent) or ξ (for one
step prox-linear algorithm). The y axis is the correlation |⟨θt,θ⟩|/∥θt∥2∥θ∥2. Red dashed lines represent
the optimal correlation of Theorem 4.5.1. Results are averaged over 50 independent trials.
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Original image.

Bayes AMP, t = 2. Bayes AMP, t = 4. Bayes AMP, t = 8.

1 step prox-linear, t = 2. 1 step prox-linear, t = 4. 1 step prox-linear, t = 8.

TAF, t = 2. TAF, t = 4. TAF, t = 8.

Gradient descent, t = 2. Gradient descent, t = 4. Gradient descent, t = 8.

Figure 4.3: Performance comparison between various GFOMs in noiseless phase retrieval (all algorithms use
the same spectral initialization).
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already at moderate values of n, d. This is not surprising given past results on AMP theory.

• All GFOMs are substantially sub-optimal with the exception of Bayes AMP that appears to achieve
the upper bound correlation, as predicted by the theory.

• The prox-linear algorithm (black lines) appears to be nearly optimal for the largest sample size, at
n/d = 2.5.

However, as emphasized above, prox-linear algorithm is not a GFOM. In each round of iteration, we
use cvxpy in Python with the default solver to solve the optimization problem (4.3). In Table 4.1,
we report the averaged wall clock time in seconds for the algorithms listed in Section 4.2.2 with 10
iterations. All experiments were conducted on a personal computer with 8GB memory and 2 cores.

The step sizes for gradient descent and one-step prox-linear were chosen in Figure 4.1 via trial and error
as to optimize the performance of each algorithm. In Figure 4.2 we plot accuracy as a function of step size
parameter for each algorithm, in the same setting as Figure 4.1. Our findings appear to be robust to the
choice of this parameter.

In order to further illustrate the difference in performance and the optimality of Bayes AMP, we test
the algorithms on a real image in Figure 4.3. The measurement matrix X is random as above. The image
contains d = 7560 pixels and we used n = 12000 (hence δ = n/d ≈ 1.6), and we treated each of the 3 color
channels separately. The step sizes were chosen for gradient descent and one step prox-linear algorithm as
to maximize reconstruction accuracy.

4.3 Symmetric rank-one matrix estimation

We observe a symmetric matrix X ∈ Rn×n given by

X =
1

n
θθT +W , (4.5)

where W = W T is a matrix with independent entries above the diagonal, (Wij)1≤i≤j≤n such that E{Wij} =
0, E{W 2

ij} = 1/n for 1 ≤ i < j ≤ n, and E{W 2
ii} = C/n for 1 ≤ i ≤ n. In addition, we observe a vector

u ∈ Rn that could provide side information about θ. The case in which this side information is not available
is covered by setting u = 0. Given µΘ,U , which is a fixed probability distribution over R2 with finite second
moment, we assume {(θi, ui)}i≤n iid∼ µΘ,U . Our objective is to estimate θ from observations (X,u).

4.3.1 General first order methods (GFOM)

A GFOM is an iterative algorithm. At the t-th iteration performs the following update:

ut+1 = XFt(u
≤t;u) +Gt(u

≤t;u) ,

Ft(u
≤t;u) := Ft(u

1, · · · ,ut;u) , Gt(u
≤t;u) := Gt(u

1, · · · ,ut;u) .
(4.6)

where Ft, Gt : Rn(t+1) → Rn are functions indexed by t ∈ N. After s iterations, the algorithm estimates θ

by θ̂s = F
(s)
∗ (u≤s;u), where F (s)

∗ : Rn(s+1) → Rn is a continuous function. Notice that a GFOM is uniquely
determined by the choice of nonlinearities {Ft, Gt, F (t)

∗ }t∈N.
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We will consider two specific settings for the functions {Ft, Gt, F (t)
∗ }t∈N, and the noise W . The choice

of these settings is dictated by the cases in which an asymptotic characterization of the AMP algorithms,
known as ‘state evolution’ [24, 104] has been established rigorously. Namely, for Setting 1 we will leverage
the results of [33], while for Setting 2 we will use the results of [23, 55].

Setting 1. • The matrix W has entries (Wij)i<j ∼iid N(0, 1/n), and EW 2
ii ≤ C/n for a constant C.

• The probability measure µΘ,U is sub-Gaussian.

• The functions Ft, Gt, F
(t)
∗ : Rn(t+1) → Rn are uniformly Lipschitz1. Further, for any fixed µ ∈ RN,

Σ ∈ RN×N positive semi-definite and (bij)i,j∈N>0
, letting (gt)t∈N>0

be a sequence of centered Gaussian
vectors with E[gs(gt)T] = Σs,tIn, the following limits exist and is finite for all s ≤ t:

p-lim
n→∞

1

n
⟨Fs(y1, . . . ,ys;u), Ft(y

1, . . . ,yt;u)⟩ ,

where p-lim denotes limit in probability and {yt}t≥1 is defined recursively as follows:

y1 = µ1θ + g1 +G0(u),

yt+1 = µt+1θ + gt+1 +Gt(y
1, · · · ,yt;u) +

t∑
s=1

btsFs−1(y
1, · · · ,ys−1;u).

(4.7)

Since Fs is uniformly Lipschitz and the input random vectors are all sub-Gaussian, one can verify that
{∥Fs(y1, . . . ,ys;u)∥22/n : n ∈ N+} is uniformly integrable. As a consequence, E⟨Fs, Ft⟩/n converges to
the same limit. The analogous limits for ⟨Fs, Gt⟩/n, ⟨Gs, Gt⟩/n, ⟨F ∗

s , Gt⟩/n, ⟨F ∗
s , Ft⟩/n ⟨F ∗

s , F
∗
t ⟩/n,

⟨Ft,θ⟩/n, ⟨Gt,θ⟩/n, ⟨F ∗
t ,θ⟩/n are also assumed to exist. Similarly, the limits of their expectations

also exist.

Setting 2. • The matrix W has independent entries on and above the diagonal with Wij = W ij/
√
n

where (W ij)i<j≤n is a collection of i.i.d. random variables with distribution independent of n, such
that EW ij = 0, EW 2

ij = 1, and EW 4

ij < ∞. Further, there exists an absolute constant C > 0, such
that E{W 4

ii} ≤ C/n2 for all i ≤ n.

• The probability measure µΘ,U is sub-Gaussian.

• Fixed (n-independent) functions Ft, Gt, F
(t)
∗ : Rt+1 → R are given. We overload this notation by letting

Ft(u
1, . . . ,ut;u) ∈ Rn be the vector with the i-th component Ft(u1, . . . ,ut;u)i = Ft(u

1
i , . . . , u

t
i;ui).

Either of the following is assumed:

(a) The functions Ft, Gt, F ∗
t are Lipschitz continuous.

(b) The functions Ft, Gt, F ∗
t are polynomials, and in addition the entries of W are sub-Gaussian

E{exp(λWij)} ≤ exp(Cλ2/n) for some n-independent constant C.
1We say that sequence of functions {fn : Ran → Rbn}n≥1 is uniformly Lipschitz if there exists n-independent constant

L > 0, such that for all n and all x,y ∈ Ran , ∥fn(x)− fn(y)∥2/
√
bn ≤ L∥x− y∥2/

√
an and ∥fn(0)∥2/

√
bn ≤ L.
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4.3.2 Main result for rank-one matrix estimation

In this section we state our optimality result for the case of rank-one matrix estimation. We refer to the
appendices for similar statements in the case of generalized linear models.

Let (Θ, U) ∼ µΘ,U , G ∼ N(0, 1), independent of each other. Define the minimum mean square error
function mmseΘ,U : R≥0 → R≥0 via

mmseΘ,U (γ) := inf
θ̂:R2→R

E
{[
Θ− θ̂(γΘ+G,U)

]2}
= E[Θ2]− E[E[Θ | γΘ+G,U ]2] .

Define the sequence (γt)t∈N via the following state evolution recursion:

γ2t+1 = E[Θ2]−mmseΘ,U (γt) , γ0 = 0 . (4.8)

The following theorem establishes that no GFOM can achieve mean square error below mmseΘ(γt) after t
iterations.

Theorem 4.3.1. For t ∈ N≥0, let θ̂t ∈ Rn be the output of any GFOM after t iterations, under either of
Setting 1 or Setting 2. Then the following holds

p-lim
n→∞

1

n
∥θ̂t − θ∥22 ≥ mmseΘ,U (γt) . (4.9)

Further there exists a GFOM which satisfies the above bound with equality.

In this statement p-limn→∞ denotes limit in probability.
In the next section we will prove Eq. (4.9). We refer to [50] for a proof of the fact this lower bound is

achieved. The proof given there implies that the algorithm achieving the lower bound is essentially unique
and coincides with Bayes AMP.

Remark 4.3.1. The sequence (γt)t≥0 is easily seen to be non-degreasing in t, whence the sequence of
lower bounds mmseΘ,U (γt) is non-increasing and converging to mmseΘ,U (γ∞). The latter quantity therefore
provides the optimal error achieved by first order methods with O(1) matrix-vector multiplications.

In some cases, mmseΘ,U (γ∞) is conjectured to be the optimal error achieved by polynomial-time al-
gorithms [125, 152]. More precisely, this is expected to be the case if the noise W is Gaussian and
E[E[Θ | U ]2] > 0 (which is the case for instance if E[Θ] ̸= 0). If these conditions are violated, better
estimation can be achieved by the following approaches:

• If W has i.i.d. but non-Gaussian entries, applying a nonlinear function entrywise to X, and then using
a spectral or first order method can improve estimation, see [150] and references therein.

• If E[E[Θ | U ]2] = 0, then using a spectral initialization improves estimation, see e.g. [152].

Refined versions of the conjecture mentioned above can be formulated in these cases.
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4.4 Proof of Theorem 4.3.1

In this section we prove Theorem 4.3.1 under Setting 2. Additionally, we will assume W to have sub-
Gaussian entries, namely E{exp(λWij)} ≤ exp(Cλ2/n) for all i, j ≤ n and some n-independent constant C.
The proof under Setting 1 is given in Appendix C.1, and the generalization to Setting 2 without sub-Gaussian
assumption is carried out in Appendix C.4.

Throughout the proof (Θ, U) ∼ µΘ,U are random variables independent of other random variables unless
explicitly stated.

4.4.1 Approximate message passing algorithms

As mentioned above, an important role in the proof is played by approximate message passing (AMP)
algorithms. These are GFOMs that enjoy special properties: here we limit ourselves to giving a definition
for the problem of symmetric rank-one matrix estimation, in the context of Setting 2.

An AMP algorithm is defined by a sequence of continuous functions {ft : Rt+1 → R}t≥0 (also termed
the nonlinearities of the AMP algorithm), and produces a sequence of vectors {at}t≥1 ⊆ Rn via the following
iteration

at+1 = Xft(a
≤t;u)−

t∑
s=1

bt,sfs−1(a
≤s−1;u) . (4.10)

Here a≤t = (a1, . . . ,at) and, as before, nonlinearities are applied entrywise. The term subtracted on the
right-hand side is known as Onsager correction term, and we will introduce the notation

OCtAMP(a
≤t−1;u) :=

t∑
s=1

bt,sfs−1(a
≤s−1;u) (4.11)

The coefficients (bt,s)1≤s≤t are deterministic. Before defining them, we introduce the following state evolution
recursion to construct the sequences µ = (µt)t≥1, Σ = (Σs,t)s,t≥1, where Σ = ΣT:

µt+1 = E
{
Θ ft(µ≤tΘ+G≤t;U)

}
,

Σs+1,t+1 = E
{
fs(µ≤sΘ+G≤s;U)ft(µ≤tΘ+G≤t;U)

}
,

G≤t := (G1, · · · , Gt) ∼ N(0,Σ≤t) .

(4.12)

In the above equations Σ≤t := (Σij)i,j≤t and µ≤t := (µi)i≤t, and it is understood that µ≤sΘ + G≤s :=

(µ1Θ+G1, · · · , µtΘ+Gt). Note that f0 only depends on U and therefore the above recursion does not need
any specific initialization. In terms of the above, we define:

bt,s = E
{
∂sft(µ≤tΘ+G≤t;U)

}
, (4.13)

where ∂sft denotes s-th entry of the weak derivative of f .
After t iterations as in Eq. (4.10), AMP estimates θ by applying a function F ∗

t : Rt+1 → R entrywise:

θ̂(X,u) := F ∗
t (a

1, . . . ,at;u) . (4.14)
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For k,m ∈ N>0, we say a function ϕ : Rm → R is pseudo-Lipschitz of order k if there exists a constant L > 0,
such that for all x,y ∈ Rm,

|ϕ(x)− ϕ(y)| ≤ L(1 + ∥x∥k−1
2 + ∥y∥k−1

2 )∥x− y∥2.

Notice that if f1, f2 : Rm → R are pseudo-Lipschitz of order k1 and k2 respectively, then their product f1f2
is pseudo-Lipschitz of order k1 + k2.

The following theorem characterizes the asymptotics of the AMP iteration (4.10) for Wigner matrices.
It was established in [24, 104] for Gaussian matrices, in [23] for Wigner matrices with sub-Gaussian entries
and polynomials nonlinearities and in [55] for Wigner matrices with sub-Gaussian entries and Lipschitz
nonlinearities. (Some small adaptations are required in the last two cases to get the next statement in its
full generality. These are carried out in the appendix.)

Theorem 4.4.1. Assume the matrix W , and nonlinearities ft satisfy the same assumptions as W and Ft
in Setting 2. Then, for any t ∈ N>0, and any ψ : Rt+2 → R be a pseudo-Lipschitz function of order 2, the
AMP algorithm (4.10) satisfies

p-lim
n→∞

1

n

n∑
i=1

ψ(a≤t
i , θi, ui) = E

{
ψ(µ≤tΘ+G≤t,Θ, U)

}
, G≤t ∼ N(0,Σ≤t) . (4.15)

(Here p-lim denotes limit in probability.)

Remark 4.4.1. Theorem 4.4.1 under Setting 2.(b) is a modified version of [23, Theorem 4], but follows from
the latter through a standard argument. More precisely:

• In [23, Theorem 4], the nonlinearity ft depends only on at, while here we allow it to depend on all
previous iterates and the initialization (a≤t,u). However [23, Theorem 4] covers the case in which
iterates xt are matrices xt ∈ Rn×q. We can easily reduce the treatment of nonlinearities that depend
on all previous times to this one [104, 149]. Fix a time horizon t and choose q > t (independent of n):
by suitably choosing the nonlinearities in the algorithm that defines xt, we can ensure that (xts)1≤s≤t

coincides with (as)1≤s≤t.

• In [23, Theorem 4], the matrix X has independent centered entries (up to symmetries). The case of
rank-one plus noise matrix X can be reduced to this one as in [65, 64, 152].

4.4.2 Any generalized first order method can be reduced to an AMP algorithm

Following [50], we first show that any GFOM of the form (4.6) can be reduced to an AMP algorithm by a
change of variables.

Lemma 4.4.1. Assume the matrix W , the measure µΘ,U , and the nonlinearities (Fs, Gs, F
∗
s )s≥0 satisfy the

assumptions of Setting 2. Then, there exist non-random functions {φs : Rs+1 → Rs}s≥1 and {fs : Rs+1 →
R}s≥0, satisfying the same assumptions (and independent of (θ,u,W )) such that the following holds. Letting
{as}s≥1 be the sequence of vectors produced by the AMP iteration (4.10) with non-linearities {fs}s≥0, we
have, for any t ∈ N>0,

u≤t = φt(a
≤t;u).
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Proof. The proof is by induction over t. For the base case t = 1, we may simply take f0(u) = F0(u) and
φ1(a

1;u) := a1 +G0(u).
Suppose the claim holds for the first t iterations. We prove that it holds for iteration t + 1. By the

induction hypothesis,

ut+1 = XFt(φt(a
≤t;u);u) +Gt(φt(a

≤t;u);u).

Let ft(x≤t;u) = Ft(φt(x
≤t;u);u). Since the composition of Lipschitz functions is still Lipschitz, we may con-

clude that ft is a Lipschitz function under Setting 2.(a). Analogously, it is a polynomial under Setting 2.(b).
Based on the choice of {fs}0≤s≤t, we compute the coefficients for the Onsager correction term {bt,j}1≤j≤t,
as per Eq. (4.13). We then define at+1 via Eq. (4.10), which yields

at+1 = ut+1 −Gt(φt(a≤t;u);u)−
t∑

j=1

bt,jfj−1(a
≤j−1;u) .

We can therefore define φt+1 via

φt+1(a
≤t+1;u) = (φt(a

≤t;u);at+1 +Gt(φt(a
≤t;u) +

t∑
j=1

bt,jfj−1(a
≤j−1;u)).

(Here note that φt+1(a
≤t+1;u) ∈ Rn×(t+1), and (A;B) denotes concatenation by columns.)

As above, we see immediately that φt+1 is Lipschitz under Setting 2.(a), and a polynomial under Setting
2.(b). This completes the proof by induction.

As an immediate consequence of the last lemma, AMP algorithms achieve the same error as GFOMs, for
the same number of iterations, under any loss. (In this statement p-liminfn→∞ denotes lim inf in probability.
Namely, given a sequence of random variables Zn, and z ∈ R, we write p-liminfn→∞ Zn ≥ z if, for any ε > 0,
limn→∞ P(Zn ≤ z − ε) = 0.)

Corollary 4.4.1. Let AtGFOM be the class of GFOM estimators with t iterations, and AtAMP be the class
of AMP algorithms with t iterations (under the assumptions of either Setting 2.(a), or Setting 2.(b)). (In
particular θ̂( · ) ∈ AtGFOM is defined by a set of n-independent functions {Ft, Gt, F (t)

∗ }t∈N, and similarly for
θ̂( · ) ∈ AtAMP.)

Then for any loss function L : Rn × Rn → R≥0:

inf
θ̂( · )∈At

GFOM

p-liminf
n→∞

L(θ̂(X,u),θ) = inf
θ̂( · )∈At

AMP

p-liminf
n→∞

L(θ̂(X,u),θ) . (4.16)

Proof. The left-hand side of Eq. (4.16) is smaller or equal than the right-hand side because AtAMP ⊆ AtGFOM.
To show that they are equal, let θ̂( · ) ∈ AtGFOM be any GFOM that achieves the infimum on the left with
tolerance ε. By Lemma 4.4.1 we can construct θ̂′( · ) ∈ AtAMP achieving the same loss.
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Remark 4.4.2. Note that throughout this section we are assuming {Ft, Gt, F (t)
∗ }t∈N to be n-independent.

However, standard compactness arguments allows to extend the present treatment to n-dependent nonlinear-
ities as long as the constants implicit in the definitions of Setting 2 (Lipschitz constant, maximum polynomial
degree, and so on) are uniformly bounded.

Appendix C.1 will treat the case of nonlinearities that are non-separable and hence necessarily n-
dependent.

4.4.3 Any AMP algorithm can be reduced to an orthogonal AMP algorithm

In the previous section we reduced GFOMs to AMP algorithms. We next show that we can in fact limit
ourselves to the analysis of a special subset of AMP algorithms, whose iterates are approximately orthogonal,
after we subtract their components along θ. We refer to this special subset as orthogonal AMP (OAMP)
algorithms.

Lemma 4.4.2. Let {at}t≥1 be a sequence generated by the AMP iteration (4.10), under either of Setting
2.(a) or Setting 2.(b). Then there exist functions {ϕt : Rt+1 → Rt}t≥1, {gt : Rt+1 → R}t≥0, satisfying the
same assumptions (and independent of (θ,u,W )) such that the following holds. Let {vt}t≥1 be the sequence
generated by an AMP algorithm with non-linearities {gt}t≥0 (and same matrix X as for {at}t≥1), namely

vt+1 = Xgt(v
≤t;u)−

t∑
s=1

b′t,sgs−1(v
≤s−1;u) , (4.17)

with deterministic coefficients (b′t,s) determined by the analogous of Eq. (4.13), with ft replaced by gt. Then
we have:

(i) For all t ≥ 1,

a≤t = ϕt(v
≤t;u).

(ii) For any pseudo-Lipschitz function ψ : Rt+2 → R of order 2,

p-lim
n→∞

1

n

n∑
i=1

ψ(v≤t
i , θi, ui) = E

{
ψ(V1, . . . , Vt,Θ, U)

}
, (4.18)

where Vi := xi−1(αiΘ + Zi), with (x0, . . . , xt−1) ∈ {0, 1}t, (α1, . . . , αt) ∈ Rt, and {Zi}i∈N≥1

iid∼ N(0, 1)

standard random variables independent of (Θ, U).

Proof. Throughout this proof, given a probability space (Ω,F ,P), we denote by L2(P) = L2(Ω,F ,P) the
space of random variables with finite second moment. Given a closed linear subspace S ⊆ L2(P) and a
random variable T ∈ L2(P), we denote by ΠS(T ) the projection of T onto S (i.e. the unique minimizer
of ∥S − T∥2L2 = E{(S − T )2} over S ∈ S). We denote by Π⊥

S = I − ΠS the projector onto its orthogonal
complement.

Given (µt)t≥1, and (Σs,t)s,t≥1 defined via state evolution, see Eq. (4.12), let G be a centered Gaussian
process with covariance Σ, and define the random variables and subspaces

Yt := ft(µ≤tΘ+G≤t;U), St := span(Yk : 0 ≤ k ≤ t) .



CHAPTER 4. A PROOF FOR GFOM VIA ORTHOGONALIZATION 52

Note that by state evolution ⟨Yt, Ys⟩L2 = Σt+1,s+1.
By linear algebra, there exist deterministic constants {cts}0≤s≤t, xt ∈ {0, 1}, such that ctt ̸= 0, and

Rt := cttΠ
⊥
St−1

(Yt) =

t∑
s=0

ctsYs, E[RtRs] = 1s=txt,

Indeed if Yt does not belong to St−1 we can simply take xt = 1 and ctt = ∥Π⊥
St−1

(Yt)∥−1
L2 . Otherwise we take

Rt = 0, ctt = 1, xt = 0.
We prove the lemma by induction. For the base case t = 1, we set g0(u) = c00f0(u) whence the claim

(i) follows trivially. For claim (ii) there are two cases. Either E{f0(U)2} = 0, whence x0 = 0 and therefore
(ii) holds with V1 = 0 almost surely, or E{f0(U)2} > 0 whence x0 = 1, c00 = E{f0(U)2}−1/2, and therefore
the claim follows by state evolution, where

α1 =
E[Θf0(U)]

E[f0(U)2]1/2
. (4.19)

Suppose the lemma holds for the first t iterations. We prove it also holds for the (t+1)-th iteration. Define

gt(v
≤t;u) =

t∑
s=0

ctsfs(ϕs(v
≤s;u);u). (4.20)

Then by the assumptions and the induction hypothesis, gt is Lipschitz under Setting 2.(a), and is a polynomial
under Setting 2.(b). Given the nonlinearities {gt}s≤t, we can compute the coefficients (b′s,j)1≤j≤s≤t. We
denote the Onsager term for this new iteration by OCtOAMP(v

≤t−1;u) :=
∑t
j=1 b

′
t,jgj−1(v

≤j−1;u). With
this notation, Eq. (4.17) can be rewritten as:

vt+1 =

t∑
s=0

ctsXfs(ϕs(v
≤s;u);u)− OCtOAMP(v

≤t−1;u) .

Using the AMP iteration that defines {as}s≥1, we get:

vt+1 =

t∑
s=0

cts(a
s+1 + OCsAMP(a

≤s−1;u))− OCtOAMP(v
≤t−1;u).

Solving for at+1 and expressing a≤t+1 = ϕt(v
≤t+1;u) (recall that ctt is always non-vanishing) we obtain the

desired mapping ϕt+1 thus proving claim (i).
In order to prove claim (ii), we distinguish two cases. In the first case xt = 0 and Rt

a.s.
= 0. Using the

state evolution for the orthogonal AMP iteration (4.17) and the definition (4.20) we obtain that claim (ii)

folds with Vt+1
a.s.
= 0.

In the second case xt = 1, then again by state evolution we obtain that the claim holds with Vt+1
d
=

αt+1Θ+ Zt+1, where

αt+1 =
E[ΘΠ⊥

St−1
(Yt)]

E[Π⊥
St−1

(Yt)2]1/2
, (4.21)

this completes the proof.
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Considering the case in which xt ̸= 0 for all t (i.e., each new non-linearity is ‘non-degenerate’), Eq. (4.18)
implies

vt = αtθ + zt ,
1

n
⟨zt, zs⟩ = 1s=t + on(1) ,

1

n
⟨zt,θ⟩ = on(1) . (4.22)

In other words, the iterates are approximately orthonormal along the subspace orthogonal to θ. This justifies
the name ‘orthogonal AMP’ (OAMP).

Remark 4.4.3. In the following we can and will restrict ourselves to the case in which, in the notation of
Eq. (4.18), xt = 1 for all t. Indeed if xt = 0 for some t, we can set to zero the corresponding AMP iterate
vt = 0 (i.e. set gt−1 = 0), and the resulting algorithm will asymptotically have the same state evolution. By
removing this iteration altogether, we obtain an algorithm with same accuracy and one less iteration.

4.4.4 Optimal orthogonal AMP

By Lemma 4.4.1 and 4.4.2 in order to derive a lower bound of estimation error achieved by GFOMs with t

iterations, it is sufficient to restrict ourselves to the class of orthogonal AMP algorithms (it is understood
that the latter can be followed by entrywise post processing).

We therefore have the following consequence of the previous results (see also Remark 4.4.3).

Corollary 4.4.2. Let θ̂ : (X,u) 7→ θ̂(X,u) be a t-iterations GFOM estimator under the assumptions of
either Setting 2.(a), or Setting 2.(b). Then for any loss function ℓ : R×R→ R≥0, pseudo-Lipschitz of order
2, we have

p-lim
n→∞

1

n

n∑
i=1

ℓ(θ̂i(X,u), θi) ≥ inf
({gℓ},φ)∈At

OAMP

E
{
ℓ(φ(α≤tΘ+Z≤t, U),Θ)

}
. (4.23)

Here the infimum is over all sequences of Lipschitz (Setting 2.(a)) or polynomial (Setting 2.(b)) nonlinearities
for an orthogonal AMP algorithm, and over all functions φ : Rt+1 → R with the same properties.

Recall that a sufficient statistics for Θ given V ≤t := α≤tΘ+Z≤t is T0 := ⟨α≤t,V ≤t⟩/∥α≤t∥2, and T0
can be rewritten as:

T0 = ∥α≤t∥2Θ+G , G ∼ N(0, 1) , G ⊥ Θ . (4.24)

Since in addition U is conditionally independent of V ≤t given Θ, the function φ in Eq. (4.23) can be taken
to be a function of (U, T0), and precisely the function that minimizes the risk of estimating Θ with respect
to the loss ℓ. The minimization on the right-hand side of Eq. (4.23) reduces to the maximization of ∥α≤t∥2,
which is solved by the next lemma.

Lemma 4.4.3. Recall the definition of (γs)s≥0 in Eq. (4.8). Then, for all t ∈ N>0, and all choices of
nonlinearities g0, . . . , gt, we have ∥α≤t∥2 ≤ γt.
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Proof. The proof is by induction over t. For the base case t = 1, using equation (4.19), we have

α2
1 ≤ sup

f0

E[Θf0(U)]2

E[f0(U)2]
= sup

f0

E{E[Θ|U ]f0(U)
}2

E[f0(U)2]
≤ E

{
E[Θ | U ]2

}
.

The last step holds by Cauchy-Schwarz inequality.
We next assume that the claim holds for iteration t, and will prove it also holds for iteration t+ 1. Let

Θ̂t := E[Θ | U, V1, · · · , Vt]. Using equation (4.21), we have

α2
t+1 =

E
{
Θ̂tΠ

⊥
St−1

(Yt)
}2

E[Π⊥
St−1

(Yt)2]

(a)

≤ E{Π⊥
St−1

(Θ̂t)
2}

(b)
= E{Θ̂2

t} − E{ΠSt−1
(Θ̂t)

2} ,

where (a) follows by Cauchy-Schwarz and (b) by Pythagora’s theorem. By construction {Π⊥
Ss−1

(Ys)/E[Π⊥
Ss−1

(Ys)
2]1/2 :

0 ≤ s ≤ t− 1} is an orthonormal basis for St−1, whence

α2
t+1 ≤ E[Θ̂2

t ]−
t−1∑
s=0

E[ΘΠ⊥
Ss−1

(Ys)]
2

E[Π⊥
Ss−1

(Ys)2]

= E[Θ̂2
t ]−

t∑
s=1

α2
s ,

Therefore ∥α≤t+1∥22 ≤ E[Θ̂2
t ]. Further

E[Θ̂2
t ] = E[E[Θ | U, V1, · · · , Vt]2]

(a)
= E[E[Θ | U, ∥α≤t∥2Θ+G]]

(b)

≤ E[E[Θ | U, γtΘ+G]2]

(c)
= γ2t+1,

where (a) follows because, as pointed above, T0 = ⟨α≤t,V ≤t⟩/∥α≤t∥2 is a sufficient statistics for Θ given
V ≤t = α≤tΘ+Z≤t, and is distributed as in Eq. (4.24). Further, (b) follows by Jensen’s inequality since, by
the induction hypothesis, ∥α≤t∥2 ≤ γt, and (c) by the definition of γt+1. This completes the induction.

The proof of Theorem 4.3.1 follows immediately from Corollary 4.4.2 and Lemma 4.4.3.

4.5 High-dimensional regression

In this section, we generalize our results to regression in generalized linear models. We observe a vector of
responses y ∈ Rn and a matrix of covariates X ∈ Rn×d which are related according to

y = h(Xθ,w),
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Here w ∈ Rn is a noise vector, θ ∈ Rd is a vector of parameters, and h : R2 → R is a continuous function
which we apply to vectors entrywise. Namely, denoting by xi ∈ Rd the i-th row of X, the above equation is
equivalent to yi = h(⟨xi,θ⟩, wi) for i ≤ n.

We assume that X ∈ Rn×d has i.i.d. entries with E[Xij ] = 0 and E[X2
ij ] = 1/n for all 1 ≤ i ≤ n and

1 ≤ j ≤ d. In addition, we observe side information u ∈ Rn and v ∈ Rd. Given µW,U and µΘ,V two fixed
probability distributions over R2, we assume {(wi, ui)}i≤n iid∼ µW,U and {(θi, vi)}i≤d iid∼ µΘ,V . We consider
the asymptotic setting where we have fixed asymptotic aspect ratio: n/d → δ ∈ (0,∞). The goal is to
estimate θ given (X,y,u,v).

4.5.1 General first order methods

In this section we introduce our notations for GFOMs for generalized linear models. At the t-th iteration,
GFOM performs the following updates:

vt :=XTF
(1)
t−1(u

≤t−1;y,u) + F
(2)
t−1(v

≤t−1;v),

ut :=XG
(1)
t (v≤t;v) +G

(2)
t (u≤t−1;y,u),

(4.25)

where we use the shorthands F (ℓ)
s (u≤s;y,u) := F

(ℓ)
s (u1, · · · ,us;y,u) andG(ℓ)

s (v≤s;v) := G
(ℓ)
s (v1, · · · ,vs;v),

where F (1)
t , G

(2)
t+1 : Rn(t+2) → Rn, F (2)

t , G
(1)
t : Rd(t+1) → Rd are continuous functions with the F ’s indexed

by t ∈ N and G’s indexed by t ∈ N>0. After s iterations, the algorithm estimates θ by θ̂s = G
(s)
∗ (v≤s;v),

where G(s)
∗ : Rd(s+1) → Rd is a continuous function. In this setting, a GFOM is uniquely determined by the

set of nonlinearities {F (1)
t−1, F

(2)
t−1, G

(1)
t , G

(2)
t , G

(t)
∗ }t∈N>0

.
As in the case of low-rank matrix estimation, we consider two settings for the random matrix X, and

the nonlinearities {F (1)
t−1, F

(2)
t−1, G

(1)
t , G

(2)
t , G

(t)
∗ }t∈N>0 .

Setting 3. • The matrix X has entries Xij
iid∼ N(0, 1/n).

• The probability measures µΘ,V , µW,U are sub-Gaussian.

• The functions F (1)
t , F

(2)
t , G

(1)
t , G

(2)
t , G

(t)
∗ are uniformly Lipschitz. Further, for any µ ∈ RN, Σ, Σ̄ ∈

RN×N positive semi-definite and (bij)1≤i,j≤t, (b̄ij)1≤i,j≤t n-independent constants, we let (gt)t∈N>0
and

(ḡt)t∈N be centered Gaussian processes with E[gsgT
t ] = ΣstId and E[ḡsḡtT] = Σ̄stIn, we assume the

following limits exist for all s ≤ t,

p-lim
n,d→∞

1

d
⟨F (2)
t (y1, · · · ,yt;v), F (2)

s (y1, · · · ,ys;v)⟩,

p-lim
n,d→∞

1

n
⟨F (1)
t (ȳ1, · · · , ȳt;h(ḡ0,w),u), F (1)

s (ȳ1, · · · , ȳs;h(ḡ0,w),u)⟩,

where {yt}t≥1, {ȳt}t≥1 are defined recursively as follows:

y1 = µ1θ + g1 + F
(2)
0 (v),

yt+1 = µt+1θ + gt+1 + F
(2)
t (y≤t;v) +

t∑
s=1

btsG
(1)
s (y≤s;v),

ȳ1 = ḡ1 +G
(2)
1 (h(ḡ0,w),u) + b̄11F

(1)
0 (h(ḡ0,w),u),
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ȳt+1 = ḡt+1 +G
(2)
t+1(ȳ

1, · · · , ȳt;h(ḡ0,w),u) +

t+1∑
s=1

b̄t+1,sF
(1)
s−1(ȳ

1, · · · , ȳs−1;h(ḡ0,w),u).

The analogous limits for ⟨G(1)
t , G

(1)
s ⟩/d, ⟨G(1)

t , F
(2)
s ⟩/d, ⟨G(t)

∗ , G
(1)
s ⟩/d, ⟨G(t)

∗ , F
(2)
s ⟩/d, ⟨G(t)

∗ , G
(s)
∗ ⟩/d,

⟨θ, G(1)
t ⟩/d, ⟨θ, F (2)

t ⟩/d, ⟨θ, G(t)
∗ ⟩/d, ⟨G(2)

t , G
(2)
s ⟩/n, ⟨G(2)

t , F
(1)
s ⟩/n, ⟨F (1)

t , ḡs⟩/n and ⟨G(1)
t , gs⟩/d are

also assumed to exist.

Setting 4. • The matrix X has independent entries with Xij = Xij/
√
n where (Xij)i≤n,j≤d is a collec-

tion of i.i.d. random variables with distribution independent of (n, d), such that EXij = 0, EX2

ij = 1,
and EX4

ij <∞.

• The probability measures µΘ,V , µW,V are sub-Gaussian.

• We have n-independent functions F (1)
t−1, F

(2)
t , G

(1)
t , G

(2)
t , G

(t)
∗ : Rt+1 → R. We overload these notations

by letting F
(1)
t (u1, · · · ,ut;y,u) ∈ Rn be the vector with the i-th component Ft(u1, · · · ,ut;y,u)i =

Ft(u
1
i , · · · , uti; yi, ui). Similar notations apply for F (2)

t , G
(1)
t , G

(2)
t and G

(t)
∗ . We assume either of the

following conditions:

(a) The functions F (1)
t−1, F

(2)
t−1, G

(1)
t , G

(2)
t , G

(t)
∗ are Lipschitz continuous.

(b) The functions F (1)
t−1, F

(2)
t−1, G

(1)
t , G

(2)
t , G

(t)
∗ are polynomial, and in addition the entries of X are

sub-Gaussian E[exp(λXij)] ≤ exp(Cλ2/n) for some n-independent constant C.

4.5.2 Main result for generalized linear models

Unless explicitly stated, in the rest parts of the proof we let (Θ, V ) ∼ µΘ,V , (W,U) ∼ µW,U and Z,Z0, Z1
iid∼

N(0, 1) independent of each other. We define the minimum mean squared error function mmseΘ,V : R≥0 →
R≥0 via

mmseΘ,V (α) := inf
Θ̂:R2→R2

E
{
[Θ− Θ̂(αΘ+ Z, V )]2

}
=E[Θ2]− E

{
E[Θ | αΘ+ Z, V ]2

}
.

We let β0 := 0, σ1 := δ−1/2E[Θ2]1/2 and σ̃1 := 0. Then for s ∈ N+, we define the following quantities
recursively:

β2
s =

1

σ2
s

E[E[Z0 | h(σsZ0 + σ̃sZ1,W ), U, Z1]
2], βs ≥ 0,

σ2
s+1 =

1

δ
mmseΘ,V (βs), σ̃2

s+1 =
1

δ
(E[Θ2]−mmseΘ,V (βs)).

(4.26)

The following theorem establishes that no GFOM can achieve mean squared error below mmseΘ,V (βt) after
t iterations.

Theorem 4.5.1. For t ∈ N>0, let θ̂t ∈ Rd be the output of any GFOM after t iterations, then under either
Setting 3 or 4, the following holds:

p-lim
n,d→∞

1

d
∥θ̂t − θ∥22 ≥ mmseΘ,V (βt). (4.27)
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Further, there exists a GFOM which satisfies the above bound with equality.

The proof of the lower bound (4.27) is presented in Appendix C.2 under Setting 4 and in Appendix C.3
under Setting 3. We refer to [50] for a proof that there exists a GFOM achieving the bound with equality.



Chapter 5

Sampling from the posterior via diffusion

processes

5.1 Introduction

Consider the standard setup of Bayesian inference, whereby the joint distribution of observed data X and
unobserved parameter θ is defined by

θ ∼ π( · ), X ∼ P( · | θ), (5.1)

where π( · ) is the prior distribution. Bayesian techniques draw inferences from the posterior distribution1

µX(dθ) := P(dθ|X) ∝ P(X | θ)π(dθ) . (5.2)

A substantial amount of research has been devoted to developing approximation methods [60, 36] and
sampling algorithms for the Bayes posterior. Among these, Markov Chain Monte Carlo (MCMC) [95, 92,
185, 121] methods play a special role because of their versatility. However, MCMC often suffers from slow
mixing [157, 198], especially when the posterior is multi-modal. In these circumstances, it might be impossible
to run the chain long enough to produce a sample with approximately correct distribution, and this can lead
to erroneous inference. Rigorous upper bounds for the mixing times have been established under various
settings [128, 199, 61, 77, 75], but proving such bounds is very challenging and existing guarantees only cover
a small fraction of practical applications.

In this paper we study a different approach to posterior sampling. In a nutshell, we construct a non-
homogeneous stochastic process (more precisely a diffusion process). The distribution of the state at time
t converges, as t → ∞, to µX(dθ). This diffusion process uses as drift the posterior expectation of θ

given Gaussian observations. Hence, the whole construction can be thought as a way to reduce sampling to
regression.

This approach was first proposed within generative modeling in machine learning [180, 100, 181, 182].
The construction of the stochastic process was based on time-reversal. Here we follow a different viewpoint,

1In the application of Bayes formula below, we are identifying P( · | θ) with its density with respect to a reference measure.
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initiated in [4] and based on the idea of stochastic localization, originally introduced by Eldan as a proof
technique [79, 80, 81, 56].

The paper [4] developed this construction to address a problem from statistical physics: sampling
from the Sherrington-Kirkpatrick Gibbs measure at a high-temperature. The present paper describes the
first rigorous application of the same approach to sampling problems in high-dimensional statistics. We
outline a general analysis technique that relies on establishing certain properties for the posterior expectation
estimator. We then apply this approach to posterior sampling in symmetric spiked models, and check the
validity of the stated conditions.

5.1.1 Construction of the diffusion process

We begin by outlining the construction of the diffusion process via stochastic localization. Stochastic lo-
calization [80, 56] defines (random) sequence µX,t(dθ) of probability measure indexed by t ∈ [0,∞). This
sequence has the following properties:

1. The initial condition is the actual posterior µX,0 = µX .

2. The final point is a point mass at a random θ∗, µX,∞ = δθ∗ .

3. The process is a martingale with respect to a filtration Ft. Namely, for any Borel set A, and any
t1 ≤ t2, E[µX,t2(A)|Ft1 ] = µX,t1(A).

As a consequence of the last two points, θ∗ is a sample form the posterior µX .
In this paper we use one specific construction for such process (throughout, we assume µX to have finite

second moment.) Let (G(t))t≥0 be a standard n-dimensional Brownian motion independent of (θ,X) with
distribution (5.1). We then define the observation process (y(t))t≥0 by

y(t) = tθ +G(t) , (5.3)

and define µX,t(dθ) to be the posterior distribution of θ given X and y(t):

µX,t(dθ) = P(dθ|X,y(t)) (5.4)

=
1

Z(X, t)
exp

{
⟨y(t),θ⟩ − t

2
∥θ∥22

}
µX(dθ). (5.5)

It is easy to check that this construction satisfies the conditions 1—3 introduced above. (For other construc-
tions of statistical interest, see Section 5.4.)

It follows from Eq. (5.5) that it is sufficient to track the process (y(t))t≥0 in order to determine the
measure µX,t(dθ). The process (y(t))t≥0 admits an alternative characterization as the unique solution of
the following stochastic differential equation (see, e.g., [4] or [131, Theorem 7.1], for a derivation):

dy(t) = m(y(t), t)dt+ dB(t), y(0) = 0. (5.6)

Here (B(t))t≥0 is a standard Brownian motion in Rn, and

m(y, t) := E[θ|X, tθ +G(t) = y] , (5.7)
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is the posterior expectation function (with G(t) ∼ N(0, tIn).)
In order to sample from µX , it is sufficient to closely track process (5.6). To this end we proceed as

follows:

1. We discretize the SDE (5.6) in time, using a straightforward Euler scheme.

2. We construct an efficient algorithm that provides an approximation m̂(y, t) of the posterior expectation
m(y, t).

We will prove a general bound on a certain distance between the distribution sampled by this sampling
method and the target, under two conditions: (1) A bound on the mean square distance between and
m(y, t), and m̂(y, t), and (2) Lipschitz continuity of the map y 7→ m̂(y, t).

We will then focus on spiked matrix models, and introduce an approximate message passing (AMP)
algorithm that satisfies the conditions above.

5.1.2 Posterior sampling from spiked models

Most of our technical effort will be devoted to a canonical problem in high-dimensional statistics: making
inferences about a low-rank signal that is corrupted by noise. Given signal-to-noise parameter β > 0, we
observe an n× n symmetric matrix X generated as follows:

X =
β

n
θθT +W . (5.8)

Here W ∼ GOE(n), independent of θ, i.e., W is an n×n symmetric matrix with independently distributed
entries above the diagonal: {Wii : i ∈ [n]} iid∼ N(0, 2/n), {Wij : 1 ≤ i < j ≤ n} iid∼ N(0, 1/n). For θ we use a
product prior:

(θi)i≤n
iid∼ πΘ . (5.9)

(Throughout, we will denote by π⊗n
Θ (dθ) = πΘ(dθ1) · · ·πΘ(dθn) the product distribution over Rn with

marginal πΘ.)
Model (5.8) is the symmetric version of the spiked model first introduced in [107]. In the asymmetric

(rectangular) version, data takes the form X̃ = uθT +Z ∈ Rn×p, where (ui)i≤n
iid∼ πU , (θi)i≤p

iid∼ πΘ, and Z

is a noise matrix. While we carry out our analysis in the symmetric setting for simplicity, the generalization
to asymmetric matrices is straightforward. We refer to Section 5.4 for a discussion of the general sampling
problem.

The symmetric spiked model (5.8) has been used as an idealized setting to understand low-rank matrix
estimation. Consider, to be definite, the case E{Θ} :=

∫
θ πΘ(dθ) = 0. Then, it is known that non-trivial

estimation of θ is possible if β > βIT with βIT a constant first rigorously characterized in [125]. On the other
hand, for β < βIT the posterior measure is very close to the prior and hence sampling from the posterior is
not interesting. Finally, polynomial-time algorithms that achieve non-trivial estimation are known to exist
for β > βalg := 1/E{Θ2}, while they are conjectured not to exist below that threshold [152]. (See Section 5.2
for further background on this model.)

Throughout the paper, we will assume β is fixed and is known to the statistician. If β > βalg is unknown,
then β can be consistently estimated from the top eigenvalue of X, λ1(X) [14]. If β ≤ βalg, then either
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the posterior is close —in a suitable sense— to the prior (for β < βIT) or estimation (hence sampling) is
conjectured to be hard (for βIT < β < βalg).

Given observation X, the posterior takes the form:

µX(dθ) ∝ exp

(
β

2
⟨θ,Xθ⟩ − β2

4n
∥θ∥42

)
π⊗n
Θ (dθ) . (5.10)

The problem of sampling from µX is already interesting if the prior is the uniform distribution over {+1,−1},
i.e. πΘ = Unif({+1,−1}). In this case, model (5.8) is also known as Z2-synchronization. This is a prototype
of the broader group-synchronization problems, and is closely related to the two-groups stochastic block
model for random graphs [176, 64, 2].

For Z2-synchronization, the measure (5.10) takes the form of an Ising model [103], with ‘coupling matrix’
X. For a general deterministic X, sampling (even approximately) from the Ising measure is known to be
#-P complete, see [178, 91] and references therein.

5.1.3 Contributions

In the present paper, we establish the following results.

Posterior sampling for spiked models. We describe an algorithm to sample from the posterior distri-
bution (5.10) under the spiked model (5.8). The algorithm has complexity O(n2).

We establish a rigorous guarantee for this algorithm. Namely, we prove that there exists a constant
β∗, such that, for β ≥ β∗, the sample generated by the algorithm has distribution that is close to the
actual posterior (5.10). Here, “close” means that the Wasserstein distance between these two distributions
is W2(µX , µ

alg
X ) = o(

√
n).

As mentioned above, β larger than a constant is the regime in which non-trivial estimation is possible.
In this regime, the measure µX is strongly correlated, and non-trivially aligned with the true θ. Note that
this is different from the regime studied in [4], which corresponds to weak correlations.

A general framework to prove approximate sampling. Moving beyond the spiked model setting, we
describe a general algorithm that, given an oracle that approximates the posterior mean of θ (given additional
observation y(t)), samples from the posterior. We give a general approximation bound for samples generated
by this algorithm, provided the oracle satisfies these conditions.

Posterior mean via approximate message passing (AMP). Our construction of the posterior mean
estimator is based on the algorithm of [152], which uses approximate message passing in conjunction with a
spectral initialization. We have to extend the analysis of [152] to prove Bayes optimality in presence of the
additional observation process y(t). However, the most challenging part of the proof is to prove that the
estimator is a Lipschitz function of y(t). We believe this is a result of independent interest. We prove it by
building on recent work by Celentano, Fan, Mei [49].

The Z2-synchronization example is useful to emphasize an important technical subtlety. If the prior
πΘ is symmetric around the origin (i.e. πΘ(A) = πΘ(−A)), then the posterior is also symmetric under flips
θ 7→ −θ. In particular, the posterior mean of Eq. (5.7) vanishes at t = 0, m(y(0), 0) = 0. In the sampling
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algorithm, we need to break this symmetry. We achieve this by letting ν be a top eigenvector of X (almost
surely the top eigenvalue is non-degenerate and hence there are only two choices for this eigenvector), and
replacing µX,t by the truncation µ+

X,t(dθ) ∝ µX,t(dθ)1⟨ν,θ⟩≥0.

We expect our sampling algorithm to be successful in a broader range of values of β, see Remark 5.3.2
below. Proving Lipschitz continuity of the AMP estimator is the current bottleneck towards reaching this
goal.

The rest of the paper is organized as follows. We survey related work in Section 5.2 and state our results
in Section 5.3. In Section 5.4 we describe a general guarantee for sampling via stochastic localization. Some
numerical experiments are presented in Section 5.5, and Section 5.6 presents the proof for sampling in the
spiked model, with most technical details deferred to the appendices.

5.1.4 Notations

For n ∈ N+, we define the set [n] := {1, 2, · · · , n}. We denote by Sn the collection of all n×n symmetric real
matrices, and let O(n) be the collection of n× n orthogonal matrices. We denote by A+ the pseudoinverse
of matrix A.

For random variables X and Y , we write X ⊥ Y if and only if X is independent of Y . We denote by
p-lim convergence in probability. The set of probability measures over the measurable space (Rn,BRn) is
denoted by P(Rn), and the set of probability measures with finite second moment by P2(Rn). We write
Law(X) for the probability distribution of the random variable (or vector) X.

TheW2 Wasserstein distance of two measures µ, ν on Rn is denoted byW2(µ, ν) := infP∈C(µ,ν) EX,Y {∥X−
Y ∥22}1/2, the infimum being taken over all couplings of µ and ν. We will also consider the scaled distance
W2,n(µ, ν) :=W2(µ, ν)/n.

5.2 Further related work

As mentioned in the introduction, Markov Chain Monte Carlo is the dominant approach to sampling from
Bayes posteriors. In the case of non-convex and possibly discrete distributions such as Eq. (5.10) of interest
here, Gibbs sampling (a.k.a. Glauber dynamics) would probably be the method of choice. This Markov
chain updates one coordinate at each step according to its conditional probability distribution given the
other coordinates. Classical methods to bound the mixing time of such a Markov chain are based on the
so-called Dobrushin condition [69] and require (in the present case) β ≲ 1/

√
n. Over the last two years,

remarkable breakthroughs were achieved establishing Markov Chain mixing under much weaker ‘spectral
mixing conditions’ [22, 82, 6]. Existing results only apply to the case of Z2-synchronization (i.e., θ ∈
{+1,−1}n). In that setting, they yield mixing under the condition β(λmax(X) − λmin(X)) ≤ 1. Using
classical results about extremal eigenvalues of spiked random matrices [14], this condition amounts to β <
1/4. This is not a regime of statistical interest, since for β < 1 it is impossible to produce an estimator with
non-vanishing correlation with the true signal [64].

Variational methods [112, 194, 139, 36] provide another popular approach to approximate Bayesian
analysis. In the challenging regime of constant signal-to-noise ratio treated here, naive mean field methods are
known to yield incorrect inference [94]. However, for Z2-synchronization, asymptotically correct inference can
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be achieved using the so-called Thouless-Anderson-Palmer (TAP) approach [84, 49, 172]. Let us emphasize
that these methods do not yield a sampling procedure.

The recent work [118] develops a sampling algorithm for Ising models that merges ideas from MCMC
and variational inference. However, even for the case of Z2-synchronization, this approach falls short of
providing an algorithm that is successful in the regime of β that is of statistical interest.

A substantial literature characterize optimal estimation error, efficient algorithms and computational
barriers for the spiked model (5.8) and its generalizations to rank larger than one or to asymmetric matrices.
A subset of these works include [64, 68, 142, 78, 125, 19, 21, 52, 152, 154].

As already mentioned, the present work is closely related to [4], which first uses an algorithmic imple-
mentation of stochastic localization, in conjunction with an AMP approximation of the posterior expectation.
However, [4] focuses uniquely on the Sherrington-Kirkpatrick model, i.e. the measure over θ ∈ {+1,−1}n,
given by µW (θ) ∝ exp(β⟨θ,Wθ⟩/2), whereby W ∼ GOE(n) (no spike). The paper [4] establishes sampling
guarantees for β < 1/2, a result improved to β < 1 by Michael Celentano [48]. Hardness for β > 1 was
established in [4] for the class of ‘stable’ algorithms.

The Sherrington-Kirkpatrick model is not of statistical interest: the data is “pure noise”, and the proba-
bility measure is not a Bayes posterior. To the best of our knowledge, the present paper is the first application
of diffusion-based methods to statistical inference.

In concurrent work, guarantees for sampling via diffusions were recently established in [123, 54, 53]
(which followed [4]). Two important differences with respect to the present paper are: (1) The results of
[123, 54, 53] assume the existence of an accurate posterior mean estimator, while we construct it; (2) The
posterior mean is assumed to be very accurate, and the resulting sampling guarantee is, as a consequence,
stronger.

We note that the latter point is related to a difference in the proof technique and it is crucial because
at the moment we are not aware of posterior mean estimators with the accuracy required by [123, 54, 53].

5.3 Main results

Recall the data distribution model of Eq. (5.8). We assume θ to be distributed according to the prior of
Eq. (5.9), where πΘ is independent of n and known. Without loss of generality, we will assume πΘ to have
unit second moment

∫
θ2 πΘ(dθ) = 1.

As mentioned several times, we need to construct an approximation m̂(y, t) of the posterior mean
function m(y, t) := E[θ|X, tθ+G(t) = y], to be used in Eq. (5.6). For this purpose, we use the Bayes AMP
algorithm with spectral initialization [152]. Namely, define the scalar denoiser F( · ; γ) : R→ R via

F(z; γ) := E[Θ|γΘ+
√
γG = z] , (5.11)

where (Θ, G) ∼ πΘ ⊗ N(0, 1). Of course, the function F(z; γ) can be evaluated efficiently numerically, via a
onre-dimensional integral (or a sum if πΘ is discrete). As an example, in the case of Z2-synchronization (i.e.,
πΘ = (δ+1 + δ−1)/2), we have F(z; γ) = tanh(z).

For z ∈ Rn, we denote by F(z; γ) the entrywise action of F( · ; γ), i.e.,

F(z; γ) =
(
F(z1; γ), . . . ,F(zn; γ)

)T
.
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Given input (X,y(t)), we compute ν ∈ Rn that is a top eigenvector of X, rescaled such that ∥ν∥2 =√
nβ2(β2 − 1). The Bayes AMP estimate at time t is then computed recursively as follows:

z0
t = ν ,

m̂k
t = F(zkt ;α

k
t ) ,

zk+1
t = βXm̂k

t + y(t)− bkt m̂k−1
t ,

(5.12)

Here the sequence αkt is defined by the state evolution recursion

α0
t = β2 − 1,

αk+1
t = β2E[E[Θ | αktΘ+ (αkt )

1/2G]2] + t,
(5.13)

and the memory (Onsager) coefficient is given by

bkt = β2E[(Θ− E[Θ | αktΘ+ (αkt )
1/2G])2] . (5.14)

Earlier literature characterizes optimality of Bayes AMP in the case t = 0, see [152] and references therein.
Namely, under suitable conditions on β, Bayes AMP computes an estimator that is asymptotically equivalent,
as n→∞, to the Bayes-optimal estimator.

In order to be more precise, we introduce the following free energy functional:

Φ(γ, β, t) :=
γ2

4β2
− γ

2
+ I(γ + t), (5.15)

where I(γ) := I(Θ;Y ) is the mutual information between Θ and Y =
√
γΘ+G when (Θ, G) ∼ πΘ ⊗N(0, 1).

Explicitly, I(γ) = E log
dpY |Θ
dpY

(Y,Θ).
In analogy with Corollary 2.3 in [152], we expect the Bayes AMP algorithm of Eq. (5.12) to achieve

Bayes optimality for all t ∈ R≥0, if and only if the following condition is satisfied.

Condition 5.3.1. The global minimum of γ 7→ Φ(γ, β, t) over γ ∈ (0,∞) is also the first stationary point
of the same function on (0,∞, for all t ≥ 0.

By evaluating the function Φ(γ, β, t) for specific priors πΘ, we observe that typically there exists
β∗(πΘ) <∞ such that this condition holds for all β ≥ β∗(πΘ) (and possibly other intervals of β as well.) In
particular, this is true when πΘ is supported on finitely many points (see Proposition D.4.1). In our running
example, Z2-synchronization, the situation is even simpler: Bayes AMP is asymptotically Bayes optimal for
all β > 0 [64].

The algorithm proceeds in slightly different ways depending on whether πΘ is symmetric around 0 or
not. If it is symmetric, then posterior µX is also symmetric under reflection θ 7→ −θ: we take account of
this by explicitly symmetrizing at the end.

If πΘ is not symmetric, we use the next lemma to align the initial spectral estimate with θ.

Lemma 5.3.1. If πΘ is not symmetric about the origin, then for any β > 1, there exists an algorithm
A : Rn → {+1,−1} with complexity O(n), such that with probability 1− on(1)

lim
n→∞

P
(
A(ν) = sign(⟨θ,ν⟩)

)
= 1 .
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We postpone the proof of Lemma 5.3.1 to Appendix D.3.
Finally, our sampling algorithm is defined by Algorithm 1.

Algorithm 1 Diffusion-based sampling for spiked models
Input: Data X, parameters (β,KAMP, L, δ);
1: Set ŷ0 = 0n;
2: Compute ν, a uniformly random leading eigenvector of X;
3: Normalize ∥ν∥22 = nβ2(β2 − 1);
4: if πΘ is not symmetric then
5: ν ← A(ν)ν;
6: end if
7: for ℓ = 0, 1, · · · , L− 1 do
8: Draw wℓ+1 ∼ N(0, In) independent of everything so far;
9: Let m̂(ŷℓ, ℓδ), be the output of Bayes AMP algorithm (5.12) with KAMP iterations;

10: Update ŷℓ+1 = ŷℓ + m̂(ŷℓ, ℓδ)δ +
√
δwℓ+1;

11: end for
12: if πΘ is symmetric then
13: Set s ∼ Unif({+1,−1});
14: else
15: Set s = +1;
16: end if
17: return θalg = s · m̂(ŷL, Lδ);

We will call µalg
X := Law(θalg) the distribution of the algorithm output θalg. Our main result is the

following guarantee for Algorithm 1.

Theorem 5.3.1. Assume that πΘ is supported on finitely many points. Then there exists a constant
β0(πΘ) ≥ β∗(πΘ) depending only on πΘ, such that for all β ≥ β0(πΘ), the following holds.

For any ξ > 0, there exist KAMP, L ∈ N and δ ∈ R>0 that depend uniquely on (β, ξ, πΘ), such that if
Algorithm 1 takes as input (X, β,KAMP, L, δ), then, with probability 1 − on(1) with respect to the choice of
X,

W2,n(µX , µ
alg
X ) ≤ ξ .

(We recall that W2,n(µ, ν) =W2(µ, ν)/
√
n is the scaled Wasserstein distance.)

The proof of this theorem is given in Section 5.6.

Remark 5.3.1. The assumption that πΘ is supported on a finite number of points is likely to be a proof
artifact, and is only used in showing that the AMP approximation of the posterior mean function is Lipschitz
continuous. In the all other lemmas we assume the weaker ?? 5.3.1. Weakening this finite support assumption
is an interesting direction for future work.

Remark 5.3.2. We expect our sampling algorithm to be successful in a broader range of values of β.
Namely, we expect it to succeed for all β ∈ (β+

AMP,∞) where β+
AMP is the supremum value of β at which AMP

does not achieve (asymptotically) Bayes optimal estimation.
In the other direction, it has been conjectured that if Bayes AMP does not reach the Bayes optimal

estimation error, then no polynomial time algorithm does. The paper [153] provides some rigorous support
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for this conjecture. Of course if Bayes optimal estimation is impossible, so is sampling. Therefore, under the
mentioned conjecture, (β+

AMP,∞) is the largest interval of β over which efficient sampling is possible.

Remark 5.3.3. Note that if the prior is discrete, Algorithm 1 may return a vector θalg that is outside the
support of the prior. This does not contradicts Theorem 5.3.1, which guarantees that θalg is close in ℓ2

distance to a sample θ ∼ µX but not necessarily in the support.
If necessary, this can be remedied by a simple rounding procedure. Simply, replace the last line of

Algorithm 1 by the following. Compute malg := s · m̂(ŷL, Lδ), and return a vector with conditionally
independent coordinates given malg such that, for each i ≤ n θalg

i is in the support of πΘ and E[θalg
i |malg] =

malg
i . By convexity of the W2 distance, this modification enjoys the same guarantees.

In fact the properties of AMP can be used to construct an even better rounding procedure, but we defer
this to future work.

5.4 Variants and generalizations

The technique developed in this paper (which in turn builds on [4]) is applicable to other posterior sampling
problems beyond the spiked model treated in the previous section. In this section, we consider the general
Bayesian posterior sampling problem as introduced in Section 5.1 and describe a sampling algorithm based
on a ‘linear observation process,’ whereby the y(t) of Eq. (5.3) is replaced by a noisy linear function of
the unknown parameters. We then further extend this setting in Section 5.4.2 to the case of non-linear
observations, illustrating this generalization in the context of the spiked model.

5.4.1 Stochastic localization and sampling via linear observations

Consider the general posterior2 µX of Eq. (5.2). For θ ∼ µX , we define the linear observation process
{y(t)}t≥0 via

y(t) = tH θ +G(t) , (5.16)

where {G(t)}t≥0 is a standard Brownian motion and the matrix H ∈ Rm×n is to be designed by the
statistician. The posterior distribution of θ given X and y(t) takes the form:

µX,t(dθ) = P(dθ|X,y(t)) (5.17)

=
1

Z(X, t)
exp

{
⟨y(t),Hθ⟩ − t

2
∥Hθ∥22

}
µX(dθ) . (5.18)

We define two posterior mean functions

m(y, t) := E[Hθ|X, tHθ +G(t) = y] , mθ(y, t) := E[θ|X, tHθ +G(t) = y] . (5.19)

Of course m(y, t) = Hmθ(y, t), but distinguishing the two functions is useful when considering estimators
2Of course, any probability distribution over Rn also fits the same framework, since we can always take X = ∅



CHAPTER 5. SAMPLING FROM THE POSTERIOR VIA DIFFUSION PROCESSES 67

that approximate them. By a straightforward generalization of Eq. (5.6), (y(t))t≥0 satisfies the SDE

y(t) = m(y(t), t)dt+ dB(t), y(0) = 0m ,

with {B(t)}t≥0 being a standard Brownian motion in Rm.
Algorithm 2 defines the sampling procedure associated to this stochastic process. This makes use of an

oracle m̂(y, t) that approximates m(y, t), and an oracle m̂θ(y, t) that approximates mθ(y, t).

Algorithm 2 Approximate sampling
Input: Parameters (L, δ, R̄);
1: Set ŷ0 = 0;
2: for ℓ = 0, 1, · · · , L− 1 do
3: Draw wℓ+1 ∼ N(0, Im), independent of everything so far;
4: Update ŷℓ+1 = ŷℓ + δm̂(ŷℓ, δℓ) +

√
δwℓ+1;

5: end for
6: return θalg = m̂θ(ŷL, Lδ)1{∥m̂θ(ŷL, Lδ)∥2/

√
n ≤ R̄};

Remark 5.4.1. Note that the oracle m̂θ(y, t) is only used at the final time t = T := Lδ. Hence we only
need to approximate the posterior expectation of θ given y(T )/T = Hθ + (g/

√
T ), where g ∼ N(0, Im).

For large T , this corresponds to very low noise. Constructing such an oracle is relatively easy in a number
of circumstances, as illustrated by two examples:

• H has full column rank (in particular, m ≥ n). We can then approximate m̂θ(y;T ) = H+y/T .

• H does not have full column rank (e.g., m < n), but πΘ is supported on sparse vectors. In this case,
standard techniques from compressed sensing and high-dimensional regression can be brought to bear
[187, 71, 47, 41].

Remark 5.4.2. In contrast with the previous remark, the oracle m̂(y, t) is required for all t. However, one
can hope to exploit the freedom to choose the matrix H to simplify this task.

We provide a theoretical guarantee for Algorithm 2 under the following assumptions (throughout ℓ ∈ N):

(A1) (Posterior mean consistency) With probability at least 1− η, it holds that

1√
m

max
ℓ≤L

∥∥m(y(ℓδ), ℓδ)− m̂(y(ℓδ), ℓδ)
∥∥
2
≤ ε1.

Further, with the same probability, ∥mθ(y(T ), T )− m̂θ(y(T ), T )
∥∥
2
≤ ε1
√
n.

(A2) (Path regularity) With probability at least 1− η, it holds that

max
ℓ≤L

sup
t∈[ℓδ,(ℓ+1)δ]

1√
m
∥m(y(t), t)−m(y(ℓδ), ℓδ)∥2 ≤ C1

√
δ + ε2.

(A3) (Lipschitz continuity)) There exists a sequence {rℓ}1≤ℓ≤L ⊆ R+ such that, letting B(ℓ) := {y ∈ Rm :

∥y − y(ℓδ)∥ ≤ rℓ
√
m}, then the following holds with probability at least 1− η:

max
ℓ≤L

sup
y1 ̸=y2∈B(ℓ)

∥m̂(y1, ℓδ)− m̂(y2, ℓδ)∥2
∥y1 − y2∥2

≤ C2 .
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Further r(ℓ) > (C1

√
δ+ε1+ε2)e

C2ℓδ/C2 for all ℓ ≤ L. Finally, with the same probability, ∥mθ(y1, T )−
m̂θ(y2, T )

∥∥
2
/
√
n ≤ C2∥y1 − y2∥2/

√
m for all y1,y2.

The dependence on constants C1, C2 will be tracked in the statement below.

Theorem 5.4.1. Assume µX to be such that
∫
(∥θ∥22/n)c0µX(dθ) ≤ R2c0 for some c0 > 1, and that

assumptions (A1), (A2), (A3) hold. Then, letting µalg
X := Law(θalg) be the distribution of the output of

Algorithm 2, we have:

W2,n(µX , µ
alg
X ) ≤ ε1 + (C1

√
δ + ε1 + ε2) · eC2T +Rc0/R̄c0−1 + 10R̄η +W2,n

(
µX ,Law(mθ(y(T ), T ))

)
.

(5.20)

In addition, there exists R̄ > 0, such that

W2,n(µX , µ
alg
X ) ≤ ε1 + (C1

√
δ + ε1 + ε2) · eC2T + C(c0)Rη

(c0−1)/c0 +W2,n

(
µX ,Law(mθ(y(T ), T ))

)
,

(5.21)

where C(c0) is a constant depending uniquely on c0. If in addition H has full column rank, then

W2,n(µX , µ
alg
X ) ≤ ε1 + (C1

√
δ + ε1 + ε2) · eC2T + C(c0)Rη

(c0−1)/c0 +
1

nT
Tr
(
(HTH)−1

)
. (5.22)

Proof. We couple {wℓ}1≤ℓ≤L and {B(t)}0≤t≤T by letting wℓ = B(ℓδ) − B((ℓ − 1)δ), and define Aℓ =

∥ŷℓ − y(ℓδ)∥2/
√
m. We also write tℓ := ℓδ.

Let Ω be the intersection of the events at points (A1), (A2), (A3). By union bound P(Ω) ≥ 1− 5η. We
will prove by induction that, on Ω, the following holds for ℓ ≤ L:

ŷℓ ∈ B(ℓ) , and Aℓ ≤
C1

√
δ + ε1 + ε2
C2

·
(
eC2ℓδ − 1

)
. (5.23)

Indeed, by definition, A0 = 0 and ŷ0 = y(0) = 0 ∈ B(0). Next, assume that the induction hypothesis
holds up to step ℓ− 1. On the event Ω:

Aℓ −Aℓ−1 ≤
1√
m

∫ tℓ

tℓ−1

∥m̂(ŷℓ−1, tℓ−1)−m(y(t), t)∥2dt

≤ δ√
m
∥m̂(y(tℓ−1), tℓ−1)−m(y(tℓ−1), tℓ−1)∥2

+ sup
t∈[tℓ−1,tℓ]

δ√
m
∥m(y(t), t)−m(y(tℓ−1), tℓ−1)∥2

+
δ√
m
∥m̂(ŷℓ−1, tℓ−1)− m̂(y((ℓ− 1)δ), tℓ−1)∥2

≤ δ ·
(
ε1 + C1

√
δ + ε2 + C2Aℓ−1

)
.

Substituting in the induction hypothesis, we obtain Aℓ ≤ C1

√
δ+ε1+ε2
C2

·
(
eC2ℓδ − 1

)
as desired. The claim

ŷℓ ∈ B(ℓ) follows from the stated condition on rℓ. This complete the induction proof.
Applying the bound (5.23) to ℓ = L and using once more assumptions (A1) and (A3), we have that on
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Ω (T = Lδ)

1√
n
∥mθ(y(T ), T )− m̂θ(ŷL, T )∥2 ≤

1√
n
∥mθ(y(T ), T )− m̂θ(y(T ), T )∥2

+
1√
n
∥m̂θ(y(T ), T )− m̂θ(ŷL, T )∥2

≤ε1 + C2AL

≤ε1 + (C1

√
δ + ε1 + ε2) · eC2T =: ∆ . (5.24)

This implies

W2,n(µX , µ
alg
X ) ≤ ∆+ E

(
∥θ∥22/n1∥θ∥2≥R

√
n

)1/2
+ 10Rη +W2,n

(
µX ,Law(mθ(y(T ), T ))

)
. (5.25)

This in turns implies Eqs. (5.20) and (5.21) by using the moment assumption to bound the expectation on
the right-hand side and optimizing over R.

Equation (5.22) follows by applying Lemma D.2.1.

Remark 5.4.3. We formulated assumptions (A1), (A2), (A3) as conditions that hold with-high probability.
For this reason, we need to assume a bound on the 2+ ε moment of ∥θ∥2 in the statement of Theorem 5.4.1.

The same argument also yields a guarantee under the minimal condition
∫
(∥θ∥22/n)µX(dθ) ≤ R2, if we

replace (A1), (A2), (A3) by similar conditions that hold in expectation.

5.4.2 The use of nonlinear observations

We can further generalize the linear observation model (5.16), by admitting non-linear observations and
non-isotropic noise. Such an observation process takes the form:

y(t) =

∫ t

0

Q(t)F (θ, t) dt+

∫ t

0

Q(s)1/2dG(s) . (5.26)

Here Q : R≥0 → Sk is a function taking values in the cone of positive semidefinite matrices, and F :

Rn × R≥0 → Rk.
It is straightforward to generalize the algorithm and analysis of the previous section to this case. Instead

of doing this, we discuss a specific construction that is well suited to the spiked model analyzed in this paper.
We let

Y (t) =
t

n
θθT +G(t) , (5.27)

where G(t) is a symmetric Brownian motion, i.e., a stochastic process taking values in Rn×n, with G(t) =

G(t)T and such that (Gij(t))1≤i≤j≤n is a collection of independent Brownian motions (independent of θ),
which are time scaled so that E{Gii(t)2} = 2t/n, E{Gij(t)2} = t/n for i < j.

This observation process is of the same nature as the original observation that defines the model, cf.
Eq. (5.8). In particular, the process (5.27) does not break the symmetry θ → −θ. These remarks can be
further formalized by noting that Y (β2 + t) := βX + Y (t) is a sufficient statistics for θ given X,Y (t). Of
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course, {Y (t)}t≥β2 takes the form

Y (t) =
t

n
θθT +G(t) , (5.28)

where {G(t)}t≥0 is again a symmetric Brownian motion, except that it is initialized at G(β2) = βW .
As for similar observation processes derived in the previous pages, Y (t) satisfies an SDE, namely

dY (t) = M(Y (t); t)dt+ dB(t) , (5.29)

M(Y ; t) := E
{ 1

n
θθT

∣∣∣ t
n
θθT +G(t) = Y

}
, (5.30)

since we incorporated the observation X in Y (t), this SDE has to be solved with initialization at t = β2:

Y (β2) = βX . (5.31)

Algorithm 3 Diffusion-based sampling for spiked models
Input: Data X, parameters (β,KAMP, L, δ);
1: Set Ŷ 0 = βX ∈ Rn×n;
2: for ℓ = 0, 1, · · · , L− 1 do
3: Draw W ℓ+1 ∼ GOE(n) independent of everything so far;
4: Let M̂(Ŷ ℓ, ℓδ + β2), be Bayes AMP estimate of M(Ŷ ℓ, ℓδ + β2) (see main text);
5: Update Ŷ ℓ+1 = Ŷ ℓ + M̂(Ŷ ℓ, ℓδ + β2)δ +

√
δW ℓ+1;

6: end for
7: Compute Xalg = M̂(Ŷ L, Lδ + β2), and let λ1(Xalg), v1(X

alg) be its top eigenvalue/eigenvector
8: if πΘ is symmetric then Draw s ∼ Unif({+1,−1})
9: else Compute s = Ã(v1(X

alg))
10: end if
11: return θalg = s

√
λ1(X

alg)v1(X
alg)

The resulting sampling procedure is outlined as Algorithm 3. Two components are unspecified: (i) An
algorithm Ã : Rn → {+1,−1} such that, with high probability, Ã(v1) = sign⟨v1,θ⟩ when v1 = v1(X

alg);
(ii) An algorithm to compute an approximation M̂(Y , t) for the conditional expectation M(Y ; t). The first
algorithm is completely analogous to A introduced in Lemma 5.3.1.

Finally, in order to compute an approximation of M(Y , t) we use once more AMP, whereby we replace
X by Y (t):

z0
t = νt , (5.32)

m̂k
t = F(zkt ; α̃

k
t ) , (5.33)

zk+1
t = Y m̂k

t − b̃kt m̂k−1
t , (5.34)

where νt is a randomly selected top eigenvector of Y , normalized such that ∥νt∥2 =
√
nt(t− 1),

α̃0
t = t− 1, (5.35)

α̃k+1
t = tE[E[Θ | α̃ktΘ+ (α̃kt )

1/2G]2], (5.36)

b̃kt = tE[(Θ− E[Θ | α̃ktΘ+ (α̃kt )
1/2G])2]. (5.37)
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We then let m̂(Y ; t) = m̂KAMP
t and M̂(Y ; t) = m̂(Y ; t)m̂(Y ; t)T.

5.5 Numerical experiments

In this section we present numerical experiments in which we use Algorithm 1 to sample from the Bayes
posterior of the spiked model. In these experiments we focus on Z2-synchronization, i.e., πΘ = (δ+1+δ−1)/2.
Since the prior is discrete, several standard techniques (e.g., Langevin or Hamiltonian Monte Carlo) do not
apply. No guarantee exists for Gibbs sampling (also known as ‘Glauber dynamics’ in this context.)

In our first experiment, we set L = 500, δ = 0.02, and n = 1000. In Figure 5.1, we plot the trajectories
of the first and second coordinates of the mean vectors generated by the algorithm: m̂(ŷℓ, ℓδ), ℓ ∈ {0, . . . , L}.
For each realization of the data, we run five independent experiments and plot the resulting trajectories.

We see that both m̂1 and m̂2 converge to either +1 or −1 as t→∞, regardless of the value of β. When
the signal-to-noise ratio is below the information-theoretic threshold (that is to say, β ≤ 1), the trajectory
appears to converge to an arbitrary corner. On the contrary, when the signal-to-noise ratio is above the
information-theoretic threshold (β > 1), most trajectories that correspond to the same data X consistently
converge to the same corner, which is correlated with the actual signal θ.
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Figure 5.1: Trajectories of the first and second coordinates of the estimated mean vectors computed by
Algorithm 3, in the case of Z2-synchronization. For this experiment we set n = 1000, L = 500, and δ = 0.02.

In our second experiment, we consider the inner product |⟨θ≤10,θ
alg
≤10⟩|, where θ≤10 ∈ R10 is the vector
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comprising the first ten coordinates of θ and similarly for θalg
≤10 ∈ R10. This inner product takes values

{−10,−8, · · · , 8, 10}. Let θ′ be a sample from the posterior distribution µX . If θalg has distribution close to
the target posterior µX , we expect the distribution of |⟨θ≤10,θ

alg
≤10⟩| to be close to the one of |⟨θ≤10,θ

′
≤10⟩|.

Let us emphasize that this is not a consequence of Theorem 5.3.1, since θ′ 7→ ⟨θ≤10,θ
′
≤10⟩ is not O(1/

√
n)-

Lipschitz.
We can compute an asymptotically exact prediction for the distribution of |⟨θ≤10,θ

′
≤10⟩| as follows.

For large n, projection of θ′ ∼ µX onto an O(1) subset of coordinates has approximately independent
entries (modulo an overall sign), with marginals given by the AMP estimates [93, 64]. More explicitly,
the distribution of |⟨θ≤10,θ

′
≤10⟩| is expected to be approximately the same as the sum of 10 independent

Rademacher random variables Z1, . . . , Z10, with E{Zi} = m̂i(0, 0). This prediction can be easily evaluated
numerically.

In Figure 5.2 we compare the empirical distributions of |⟨θ≤10,θ
alg
≤10⟩| with the the theoretical prediction

just described. Here, we take n = 1000, L = 500, δ = 0.02 and multiple values of β. For each value of
β, we draw a single realization (X,θ), and generate 1000 samples via Algorithm 1 for those data. The
experimental outcomes match well with the theoretical predictions, witnessing that the algorithm behaves
better than what is guaranteed by our theory.
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Figure 5.2: Histograms: empirical distributions of |⟨θ≤10,θ
alg
≤10⟩ for a samples generated by Algorithm 1 for a

single realization of the data (X,θ) at each value of β. Continuous line: theoretical prediction approximating
the distribution of |⟨θ≤10,θ

alg
≤10⟩| with the true posterior.

We just mentioned that, under the posterior, the joint distribution of a small subset of the coordinates
of θ is expected to be well approximated by a product form. Let us emphasize that this does not mean that
the distribution of the whole vector θ is close in W2,n to a product distribution.
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In order to highlight the nontrivial correlations in µalg
X , we consider the normalized log-likelihood:

L(X,θalg) :=
β

2n
⟨θalg,Xθalg⟩.

As T →∞, our theory implies that the distribution of θalg is close to the true posterior. For θ ∼ µX( · ), we
have

p-lim
n→∞

L(X,θ) = lim
n→∞

E
{∫
L(X,θ)µX(dθ)

}
= lim
n→∞

β

2n
E
{
E
{
⟨θ,Xθ⟩|θ

}}
=
β2

2
. (5.38)

Note that the function θ 7→ L(X,θ) is Lipschitz (over the domain of interest ∥θ∥2 ≤
√
n) with Lipschitz

constant (β/n) sup∥θ∥2≤
√
n ∥Xθ∥2 ≤ C(β)/

√
n (with high probability with respect to the choice of X).

Hence Theorem 5.3.1 implies that Algorithm 1 will produce samples with the correct expectation for the
value of this function.
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Figure 5.3: Bands: normalized log-likelihood achieved by Algorithm 3. Dashed lines: theoretical predictions.

The simple calculation in the last display also shows that the posterior µX cannot be approximated in
W2,n by a product measure. Indeed, it is possible to show that, at least for certain values of β,

p-lim
n→∞

β

2n
⟨m(0, 0),Xm(0, 0)⟩ < β2

2
, (5.39)

with strict inequality3.
3Consider for instance β = 1 + ε. Then, the results of [64] imply p-limn→∞ ∥m(0, 0)∥22/n ≤ Cε, and therefore
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In Figure 5.3 we compare the theoretical prediction of Eq. (5.38) with numerical results for L(X,θalg).
We fix δ = 0.01, n = 1000 and consider several values of the signal-to-noise ratio β and the number of steps
L. For each value of the parameters, we repeat the experiment independently for 300 times, and display
our results. The bands represent the 10% and 90% quantiles. From the figure, we see that the likelihood
increases with T , which agrees with the expectation that at larger T , µalg

X matches better with the actual
posterior. The agreement with the theoretical prediction is again excellent.

5.6 Proof of Theorem 5.3.1

This section is devoted to analyzing Algorithm 1. In particular, we will outline the proof of Theorem 5.3.1,
while delaying most of the technical details to the appendices.

5.6.1 The tilted measure

As discussed in the introduction, and further explained in Section 5.4, after ℓ steps, the state of the algorithm
is given by vectors ŷℓ and m̂(ŷℓ, ℓδ). In particular, m̂(ŷℓ, ℓδ) is interpreted as an estimate the posterior
mean of θ given y(t) = ŷℓ.

This interpretation has to be slightly modified if πΘ is symmetric. To be explicit, for any y ∈ Rn and
t > 0, we define the ‘tilted measure’ µX,y,t as follows (in the formulas below Z(X,y, t) are normalization
constants defined by

∫
µX,y,t(dθ) = 1):

• If πΘ is not a symmetric distribution, then µX,y,t is the posterior distribution of θ given X and
y(t) = y:

µX,y,t(dθ) :=
1

Z(X,y, t)
exp

{
β

2
⟨θ,Xθ⟩ − β2

4n
∥θ∥42 + ⟨y,θ⟩ −

t

2
∥θ∥22

}
π⊗n
Θ (dθ) .

• If πΘ is a symmetric distribution, we let v1(X) be a uniformly4 random leading eigenvector of X.
Then we break the symmetry by conditioning on the sign of ⟨θ,v1(X)⟩ as well. Namely,

µX,y,t(dθ) :=
1

Z(X,y, t)
exp

{
β

2
⟨θ,Xθ⟩ − β2

4n
∥θ∥42 + ⟨y,θ⟩ −

t

2
∥θ∥22

}
1⟨θ,v1(X)⟩≥0 π

⊗n
Θ (dθ).

In the symmetric case, the relation to the posterior distribution is given by P(θ ∈ A|X,y(t) = y) =

(1/2)µX,y,t(A) + (1/2)µX,y,t(−A). Of course, if we can approximately sample θ ∼ µX,0,0, then we can
sample from θ ∼ P(θ ∈ · |X) with same approximation guarantees in W2 distance. Therefore, it is sufficient
to generate θ ∼ µX,0,0 and then flip its sign with probability 1/2, which is what we do in Algorithm 1.
Hereafter we will focus on µX,y,t.

Throughout the proof, we use m(y, t) to denote the mean of the tilted measure m(y, t) :=
∫
θ µX,y,t(dθ).

p-limn→∞(β/2n)⟨m(0, 0),Xm(0, 0)⟩ ≤ Cε.
4Almost surely, the leading eigenvalue of X is non-degenerate, and therefore there are two choices of {+v,−v} for the

normalized leading eigenvector. We let v1(X) ∼ Unif({+v,−v}) independently of X, y(t).
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5.6.2 Proof outline

The proof consists in checking the assumptions of Theorem 5.4.1. Namely, in Section 5.6.3 we prove that the
AMP estimate is close to the expectation, thus verifying (A1); in Section 5.6.4 we verify the path-regularity
assumption (A2); finally, in Section 5.6.5 we establish the Lipschitz continuity of the AMP estimate, verifying
assumption (A3).

The proof is completed in Section 5.6.6. Throughout the proof, the prior distribution πΘ is fixed
and hence we will not note the dependency of various quantities on πΘ. We will on the other hand track
dependencies on other quantities by noting them in parentheses. We will use m̂k(y, t) to denote the estimate
produced by the AMP algorithm of Eq. (5.12) after k iterations, on input X,y.

5.6.3 AMP achieves Bayes optimality

The analysis of AMP maes use on the following characterization in terms of state evolution, which is adapted
from [152]. Here, we refer to a function ψ : Rm → R as pseudo-Lipschitz if |ψ(x1)−ψ(x2)| ≤ C(1+ ∥x1∥2+
∥x2∥2)∥x1 − x2∥2.

Proposition 5.6.1 ([152]). Consider the Bayes AMP algorithm with spectral initialization, defined in
Eq. (5.12), and the state evolution recursion of Eqc. (5.13). Assume πΘ to be sub-Gaussian. Then, for
any fixed k, t ≥ 0 and any pseudo-Lipschitz test function ψ : R2 → R, we have

p-lim
n→∞

1

n

n∑
i=1

ψ(θi, z
k
t,i) = E

{
ψ(Θ, αktΘ+ (αkt )

1/2G)
}
, (5.40)

where expectation is with respect (Θ, G) ∼ πΘ ⊗ N(0, 1).

Building on state evolution, we prove Bayes optimality when the signal-to-noise ratio is above a suitable
constant β0.

Lemma 5.6.1. Assume there exists β∗ <∞ depending only on πΘ, such that Condition 5.3.1 holds for all
β > β∗. Then there exists a constant β0 ≥ β∗ that depends uniquely on πΘ, such that the following hold.

For any β ≥ β0 and ε, T > 0 there exists K(β, T, ε) ∈ N, such that for any t ≤ T :

p-limsup
n→∞

1√
n
∥m(y(t), t)− m̂K(β,T,ε)(y(t), t)∥2 ≤ ε,

where m̂k(y, t) = m̂k
t is the output of AMP (5.12) at time t after k iterations, and m(y, t) is the mean

vector of the tilted measure as defined in Section 5.6.1.

The proof of Lemma 5.6.1 is deferred to Appendix D.4.

Remark 5.6.1. Denote by E
(1)
β,L,δ,ε,n the event that AMP returns an accurate approximation of the posterior

mean for all t ∈ {0, δ, . . . , Lδ}. Namely, we define by Lemma 5.6.1:

E
(1)
L,δ,ε,n :=

{
1√
n

∥∥m(y(ℓδ), ℓδ)− m̂K(β,T,ε)(y(ℓδ), ℓδ)
∥∥
2
≤ ε ∀ℓ ∈ {0, 1, · · · , L}

}
. (5.41)

By Lemma 5.6.1, we have P(E (1)
L,δ,ε,n) = 1− on(1).
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5.6.4 Path regularity

We next consider assumption (A2) of Theorem 5.4.1: namely we show that the path t 7→ m(y(t), t) is
sufficiently regular.

Lemma 5.6.2. Assume there exists β∗ < ∞ such that Condition 5.3.1 holds for all β > β∗. Then there
exists a constant β0 > β∗ that depends only on πΘ, such that the following holds. For fixed β > β0, T ∈ R≥0

there exists a constant Creg = Creg(β) > 1, such that for all 0 ≤ t1 < t2,

p-lim
n→∞

sup
t∈[t1,t2]

1

n

∥∥m(y(t), t)−m(y(t1), t1)
∥∥2
2
= p-lim

n→∞

1

n

∥∥m(y(t1), t1)−m(y(t2), t2)
∥∥2
2

≤ Creg

2
· |t1 − t2|.

The proof of Lemma 5.6.2 is deferred to Appendix D.5.

Remark 5.6.2. Define E
(2)
β,L,δ,n to be the event

E
(2)
β,L,δ,n :=

{
sup

t∈[ℓδ,(ℓ+1)δ]

1√
n

∥∥m(y(t), t)−m(y(ℓδ), ℓδ)
∥∥
2
≤ Creg(β, T )

√
δ ∀ℓ ≤ L

}
. (5.42)

Lemma 5.6.2 implies that P(E (2)
β,L,δ,n) = 1− on(1).

5.6.5 AMP is Lipschitz continuous

The crucial technical step is to prove that Bayes AMP is Lipschitz continuous in a neighborhood of y(t),
thus establishing Assumption (A2) of Theorem 5.4.1. Namely, we will use a change of variables introduced
in [49] to prove that Bayes AMP is a contraction in the new variables, for β above a threshold.

In order to define change of variables, for γ > 0, we define Γγ ,Ψγ : R→ R by

Γγ(h) :=

∫ h

0

Var[Θ | γΘ+
√
γG = s]1/2ds,

Ψγ(p) := E[Θ | γΘ+
√
γG = Γ−1

γ (p)],

(5.43)

where Θ ∼ πΘ, G ∼ N(0, 1) and Θ ⊥ G. Note that Γγ ,Ψγ are both strictly increasing. The mappings Γγ ,Ψγ
are specifically designed such that if we let p = Γγ(h) and m = Ψγ(p), then the following factorization
equality holds:

Var[Θ | γΘ+
√
γG = h]1/2 =

dm

dp
=

dp

dh
.

One can verify that both Γγ and Ψγ are strictly increasing. Furthermore, both Γγ and Ψγ are MΘ-Lipschitz
continuous, where MΘ = ∥πΘ∥∞.

Recall the posterior expectation function F is defined in Eq. (5.11). For t ∈ R≥0, k ∈ N, we define AMP
mapping T (t,k)

AMP : Rn × Rn × Rn → Rn via

T
(t,k)
AMP (m,m,y) := F(βXm+ y − bktm, αk+1

t ) .
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The AMP iteration Eq. (5.12) can therefore be rewritten as

m̂k+1
t = T

(t,k)
AMP (m̂

k
t , m̂

k−1
t ,y(t)) .

Let p̂kt := Ψ−1
αk

t
(m̂k

t ) and define the AMP mapping in p-domain by

T̃
(t,k)
AMP (p,p,y) = Ψ−1

αk+1
t

(F(βXΨαk
t
(p) + y − bktΨαk−1

t
(p), αk+1

t )).

We immediately see that the vectors p̂kt satisfy the recursion

p̂k+1
t = T̃

(t,k)
AMP (p̂

k
t , p̂

k−1
t ,y(t)).

Note that the range of Ψγ is (aΘ, bΘ), where aΘ = inf supp(πΘ), bΘ = sup supp(πΘ). For m ∈ (aΘ, bΘ)
n,

we define Dγ(m) := diag{Var[Θ | γΘ +
√
γG = Γ−1

γ (Ψ−1
γ (m))]1/2} ∈ Rn×n, where, by convention, the

conditional variance operator applies on vectors entrywise.
We compute the Jacobian matrices of the AMP mappings T (t,k)

AMP and T̃ (t,k)
AMP :

dT
(t,k)
AMP (m,m−,y)

d(m,m−,y)
=
(
βDαk+1

t
(m+)2X; −bktDαk+1

t
(m+)2; Dαk+1

t
(m+)2

)
, (5.44)

dT̃
(t,k)
AMP (p,p,y)

d(p,p,y)
=
(
βDαk+1

t
(m+)XDαk

t
(m); −bktDαk+1

t
(m+)Dαk−1

t
(m−),Dαk+1

t
(m+)

)
. (5.45)

(Here it is understood that m+ = T
(t,k)
AMP (m,m−,y), m = Ψαk

t
(p), and m− = Ψαk−1

t
(p−).

Roughly speaking, we will show that, if the signal strength β is large, and after large number of iterations
k, then most elements Dαk

t
(m̂t

k), Dαk+1
t

(m̂k+1
t ), Dαk−1

t
(m̂k−1

t ) become small. This in turn will imply that
the operator norms of the Jacobian matrices in Eqs. (5.44) and (5.45) are small. Finally, this can be used
to prove that the AMP mapping is contractive.

The next two lemmas formalize this argument. In the first lemma, we provide an upper bound on
∥Dαk

lδ
(m̂k

lδ)∥2F /n with a function of β. In the same lemma, we also show that AMP is with high probability
Lipschitz continuous if we allow the Lipschitz constant to depend on (β, πΘ) and the number of iterations.

Lemma 5.6.3. Assume there exists β∗ < ∞ such that Condition 5.3.1 holds for all β > β∗ and further
assume πΘ is supported on finitely many points.Let K(β, T, ε) be the constant of Lemma 5.6.1.

Then there exist constants β0, Cconv > 0 that depend uniquely on πΘ, such that the following hold: For
all β ≥ β0, there exist k0(β) ∈ N, Lip0(β) which are functions of (πΘ, β) only, such that for all ε > 0,
t ∈ [0, T ], the following hold with probability 1− on(1):

1. For all k0(β) ≤ k ≤ K(β, T, ε),

1

n
∥Dαk

t
(m̂k(y(t), t))∥2F ≤ C−1

conv exp(−Cconvβ
2), (5.46)

bkt ≤ C−1
conv exp(−Cconvβ

2) . (5.47)
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2. For k ∈ {k0(β)− 1, k0(β), k0(β) + 1}:

sup
y1 ̸=y2

∥m̂k(y1, t)− m̂k(y2, t)∥2
∥y1 − y2∥2

≤ Lip0(β) , (5.48)

sup
y1 ̸=y2

∥p̂k(y1, t)− p̂k(y2, t)∥2
∥y1 − y2∥2

≤ Lip0(β) , (5.49)

where p̂k(y, t) := Ψ−1
αk

t
(m̂k(y, t)).

We postpone the proof of Lemma 5.6.3 to Appendix D.6.
By classical estimates on the norm of spiked random matrices [28], with probability 1− on(1) we have

∥X∥op ≤ β + β−1 + 1. We denote by E
(3)
β,L,δ,ε,n the intersection of this event and the one of Lemma 5.6.3.

Namely

E
(3)
β,L,δ,ε,n :=

{
Eq. (5.46) holds for all k0(β) ≤ k ≤ K(β, Lδ, ε) and all t/δ ∈ {0} ∪ [L],

Eq. (5.48) and Eq. (5.49) hold for all k ∈ {k0(β), k0(β)± 1} and all t/δ ∈ {0} ∪ [L] ,

and ∥X∥op ≤ 1 + β + β−1
}
. (5.50)

By the last lemma and a union bound, we have P(E (3)
β,L,δ,ε,n) = 1− on(1). In what follows, we will be mainly

working on the set E
(1)
L,δ,ε,n ∩ E

(2)
β,L,δ,n ∩ E

(3)
β,L,δ,ε,n, which occurs with probability 1− on(1) by the lemmas we

establish.
The next lemma from [49] is useful for bounding the operator norms of the Jacobian matrices.

Lemma 5.6.4 (Lemma C.2. in [49]). For t ∈ [0, 1]n and ξ > 0, denote by S(t, ξ) the subset of indices
i ∈ {1, · · · , n} for which ti ≥ ξ. Then there exist universal constants C,C ′, c > 0 such that for W ∼ GOE(n),
any ξ > 0 and 0 < q < 1,

P

 sup
t1,t2∈[0,1]n:

|S(t1,ξ)|∨|S(t2,ξ)|≤nq

∥ diag(t1)W diag(t2)∥op ≥ C ′(ξ +
√
q log(e/q))

 ≤ Ce−cqn. (5.51)

Lemmas 5.6.3 and 5.6.4 together imply that AMP is a contraction, whence Lipschitz, in a neighborhood
of y(t).

Lemma 5.6.5. Under the assumptions of Lemma 5.6.3, let k0(β),K(β, T, ε) be as defined there.
Then there exists β0 > 0 that depends uniquely on πΘ, such that the following hold: For all β ≥ β0,

there exists r(β),Lip∗(β) > 0 depending uniquely on (πΘ, β) such that, for all t ∈ [0, T ], the following holds
with probability 1− on(1) for all k0(β) ≤ k ≤ K(β, T, ε):

sup
y1 ̸=y2∈Bn(y(t),r(β))

∥m̂k(y1, t)− m̂k(y2, t)∥2
∥y1 − y2∥2

≤ 2Lip∗(β) . (5.52)

(Here Bn(x0; r) := {x ∈ Rn : ∥x− x0∥ ≤ r}.)

The proof of Lemma 5.6.5 can be found in Appendix D.7.
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5.6.6 Completing the proof of Theorem 5.3.1

We are now in position to apply Theorem 5.4.1. First of all notice that in the present case H = In and
therefore m(y, t) = mθ(y, t). We set T , ε and δ as follows

T =
2

ξ
, (5.53)

ε =
r(β) ∧ ξ

8
e−4Lip∗(β)/ξ , (5.54)

√
δ =

r(β) ∧ ξ
8Creg(β, 2/ξ)

e−4Lip∗(β)/ξ . (5.55)

and set KAMP = K(β, T, ε), where K(β, T, ε) is defined by Lemma 5.6.1.
We next check that assumptions (A1), (A2), (A3), hold (with η = on(1)):

(A1) By Remark 5.6.1, this assumption holds with ε1 = ε.

(A2) By Remark 5.6.2, this assumption holds with C1 = Creg(β, 2/ξ), ε2 = 0.

(A3) By Lemma 5.6.5, this assumption holds with C2 = 2Lip0(β), rℓ = r(β). We need to check the lower
bound on rℓ that is required by assumption (A3). For that purpose, note that

(C1

√
δ + ε1 + ε2)

eC2Lδ

C2
≤
(
Creg(β, 2/ξ)

√
δ + ε

)
e4Lip∗(β)/ξ (5.56)

≤ r(β)

2
< rℓ . (5.57)

where in the first step we used Lδ = T = 2/ξ and, without loss of generality, Lip∗(β) ≥ 1. In the
second inequality, we used the choices for ε, δ given in Eqs. (5.54), (5.55).

Note that, since ∥πΘ∥∞ < ∞, we then have
∫
(∥θ∥2/n)2µX(dθ) ≤ R4, where R > 0 is a constant

depending only on πΘ.
By applying (5.22) from Theorem 5.4.1, we obtain that, for any η > 0, the following holds with proba-

bility 1− on(1) with respect to the choice of X

W2,n(µX , µ
alg
X ) ≤ ε+

(
Creg(β, 2/ξ)

√
δ + ε

)
e4Lip∗(β)/ξ + CRη1/2 +

1

T
(5.58)

≤ 7ξ

8
+ CRη1/2 ≤ 9

10
ξ . (5.59)

where C > 0 is a numerical constant, and the last inequality follows by choosing a suitably small η.



Appendix A

Low-rank matrix estimation with

diverging aspect ratios

A.1 Preliminaries

A.1.1 Further notations and conventions

In this section, we present an incomplete summary of the notations and conventions that will be applied
throughout the appendix.

For two sequences of random vectors {Xn}n∈N+
⊆ Rk and {Y n}n∈N+

⊆ Rk, we say Xn
P≃ Y n if and

only if ∥Xn −Y n∥ = op(1). For n, k ∈ N+ and matrix X ∈ Rn×k with the i-th row denoted by xi ∈ Rk, we
let p̂X be the empirical distribution of the xi’s:

p̂X :=
1

n

n∑
i=1

δxi ,

where δxi is the point mass at xi.

A.1.2 Wasserstein distance

For two probability distributions µ1, µ2 over Rr, recall that the Wasserstein distance between µ1 and µ2 is
defined as

W2(µ1, µ2) :=

(
inf

γ∈Γ(µ1,µ2)

∫
Rr×Rr

∥x− y∥2dγ(x, y)
)1/2

, (A.1)

where Γ(µ1, µ2) denotes the collection of all probability distributions over Rr × Rr with marginals µ1 and
µ2 on the first and last r coordinates, respectively. One observation is that for matrices L1,L2 ∈ Rn×r, the
W2 distance between the empirical distributions of their rows is upper bounded by the Frobenius norm of
their difference: W2(p̂L1 , p̂L2) ≤ 1√

n
∥L1 −L2∥F .

80
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A.2 Technical lemmas

Lemma A.2.1. Let x1, · · · ,xn ∈ Rp be independent τ2 sub-Gaussian random vectors, with mean 0 and
covariance E[xixTi ] = Σ. We define the sample covariance matrix Σ̂ = 1

n

∑n
i=1 xix

T
i . Then for any s ≥ 100,

with probability at least 1− 2e−ps
2/3200 we have

∥Σ̂−Σ∥op ≤ sτ2
√
p

n
,

provided that s
√
p/n ≤ 25.

Lemma A.2.2 (Wedin’s theorem [197]). Let A0, A1 ∈ Rm×n have singular value decomposition (for a ∈
{0, 1})

Aa = UaΣaV
T
a ,

with Σa containing the singular values of Aa in decreasing order. Furthermore, we let Ua,+ ∈ Rm×k(a),
V a,+ ∈ Rn×k(a), be formed by the first k(a) columns of Ua, V a, respectively, such that

Ua = [Ua,+|Ua,−], V a = [V a,+|V a,−].

Let σk(·) denote the k-th largest singular value of a matrix. Finally assume ∆ ≡ σk(1)(A1)−σk(0)+1(A0) > 0.
Let P a = V a,+V

T
a,+(respectively, Qa = Ua,+U

T
a,+) denote the projector onto the right singular space (left

singular space) corresponding to the top k(a) singular values of Aa. Then we have

∥(I − P 0)P 1∥op ≤
1

∆
{∥(I −Q0)(A0 −A1)P 1∥op ∨ ∥Q1(A0 −A1)(I − P 0)∥op} .

If instead we have ∆ ≡ σk(0)(A0)− σk(1)+1(A1) > 0, then

∥P 0(I − P 1)∥op ≤
1

∆
{∥(I −Q1)(A0 −A1)P 0∥op ∨ ∥Q0(A0 −A1)(I − P 1)∥op} .

Lemma A.2.3 (Nishimori identity, Proposition 16 in [125]). Let (X,Y ) be a couple of random variables
on a polish space. Let k ≥ 1 and let x(1), · · · ,x(k) be k i.i.d. samples (given Y ) from the distribution
P(X = · | Y ), independently of every other random variables. Let us denote ⟨·⟩ the expectation with respect
to P(X = · | Y ) and E the expectation with respect to (X,Y ). Then for all continuous bounded function f ,

E⟨f(Y ,x(1), · · · ,x(k))⟩ = E⟨f(Y ,x(1), · · · ,x(k−1),X)⟩.

Lemma A.2.4. Let {fn}n∈N+
be a sequence of convex differentiable functions on R, and fn(x)→ f(x) for

all x ∈ R. Let Df = {x ∈ R : f is differentiable at x}, then f ′n(x)→ f ′(x) for all x ∈ Df .

Lemma A.2.5. If f and g are two differentiable convex functions, then for any b > 0,

|f ′(a)− g′(a)| ≤ g′(a+ b)− g′(a− b) + d

b
,

where d = |f(a+ b)− g(a+ b)|+ |f(a− b)− g(a− b)|+ |f(a)− g(a)|.
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Proof. See [165], Lemma 3.2.

Lemma A.2.6. For X ∈ Rn×d, we define ∥X∥1 =
∑
i∈[n],j∈[d] |Xij |. Then for X1,X2 ∈ Rn×d, we have

∥X1X
T
1 −X2X

T
2 ∥1 ≤ n∥X1 −X2∥F (∥X1∥F + ∥X2∥F ).

Proof. we let x1
i ∈ Rd be the i-th row of X1 and we let x2

i ∈ Rd be the i-th row of X2. Then by triangle
inequality,

∥X1X
T
1 −X2X

T
2 ∥1 ≤∥X1(X1 −X2)

T∥1 + ∥X2(X1 −X2)
T∥1

≤
∑
i,j∈[n]

(∥x1
i ∥2 + ∥x2

i ∥2)× ∥x1
j − x2

j∥2

≤
∑
i∈[n]

∥x1
i ∥2 ×

√
n
∑
j∈[n]

∥x1
j − x2

j∥22 +
∑
i∈[n]

∥x2
i ∥2 ×

√
n
∑
j∈[n]

∥x1
j − x2

j∥22

≤
√
n
∑
i∈[n]

∥x1
i ∥22 ×

√
n
∑
j∈[n]

∥x1
j − x2

j∥22 +
√
n
∑
i∈[n]

∥x1
i ∥22 ×

√
n
∑
j∈[n]

∥x1
j − x2

j∥22

=n∥X1 −X2∥F (∥X1∥F + ∥X2∥F ).

A.3 Proofs for the strong signal regime

A.3.1 Proof of Theorem 2.3.1

Proof of claim 1
The top r eigenvectors of AAT are also the top r eigenvectors of the following matrix

1

d
AAT − In =

ΛΘTΘΛT

nd
+

1

d
√
n

(
ΛθTZT +ZθΛT

)
+

1

d
ZZT − In.

We let X =
(
ΛθTZT +ZθΛT

)
/d
√
n+ZZT/d−In. Applying in sequence triangle inequality, Lemma A.2.1

and the law of large numbers, we conclude that there exists a constant C > 0, such that with probability
1− on(1)

∥X∥op ≤
2

d
√
n
∥ΛθTZT ∥op + ∥1

d
ZZT − In∥op

≤ 2

d
√
n
∥Λ∥F ∥Zθ∥F + ∥1

d
ZZT − In∥op

≤C
√
n

d
. (A.2)

Using Lemma A.2.2, we see that there exists another constant C̃ > 0, such that with probability 1 − on(1)
we have

Lsin(Λ̂s,Λ) ≤ C̃
√
n

d
.
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This completes the proof of the first claim of the theorem since by assumption d/n→∞.

Proof of claim 2
We write AAT/d− In = qΘΛΛT/n+W , where W is an n×n symmetric matrix. Using Eq. (A.2) and

the law of large numbers, we find out that ∥W ∥op = oP (1).
We denote the unique eigenvalues of qΘQΛ by u1 > u2 > · · · > uk > 0, where k ≤ r. The corresponding

geometric multiplicities are denoted by s1, · · · , sk ∈ N+. We let δl, δ̂l be the l-th largest eigenvalues of
qΘΛΛT/n and qΘΛΛT/n+W , respectively. We then see immediately that δl, δ̂l

P→∑k
i=1 ui1{

∑i−1
j=1 sj+1 ≤

l ≤∑i
j=1 sj} as n, d→∞. Let

Di = diag
(
δ∑i−1

j=1 sj+1, · · · , δ∑i
j=1 sj

)
∈ Rsi×si ,

D̂i = diag
(
δ̂∑i−1

j=1 sj+1, · · · , δ̂∑i
j=1 sj

)
∈ Rsi×si .

The above arguments imply that Di, D̂i
P→ uiIsi .

For i ∈ [k], we define the matrices V i, V̂ i ∈ Rn×si , such that the columns of V i/
√
n, V̂ i/

√
n are the

eigenvectors of qΘΛΛT/n, qΘΛΛT/n +W that correspond to the top
∑i−1
j=1 sj + 1 to

∑i
j=1 sj eigenvalues,

respectively. By Wedin’s theorem (Lemma A.2.2), we see that Lsin(V i, V̂ i)
P→ 0 for all i ∈ [k]. Combining

all arguments derived, we conclude that

∥∥∥ 1
n

r∑
i=1

V iDiV
T
i −

1

n

r∑
i=1

V̂ iD̂iV̂
T
i

∥∥∥2
F

P→ 0.

Note that
∑r
i=1 V iDiV

T
i /n = qΘΛΛT/n and D̂i, V̂ i are functions of A, thus we have found an estimator

L̂ ∈ Rn×n such that ∥L̂−ΛΛT∥2F /n2 = oP (1). Based on this convergence, we only need to apply a standard
truncation argument to show the expected mean square error vanishes. We skip the details here for the sake
of simplicity.

Proof of claim 3
By claim 2 of the theorem, we see that there exists an estimate L̂ of ΛΛT which achieves consistency:
∥L̂−ΛΛT∥F /n = oP (1). Let

R := argminX∈Rn×r ∥L̂−XXT∥F .

By definition, ∥L̂ −RRT∥F ≤ ∥L̂ −ΛΛT∥F , thus ∥L̂ −RRT∥F /n = oP (1). By triangle inequality we see
that ∥ΛΛT −RRT∥F /n = oP (1), from which we conclude that there exists Ω0 ∈ O(r) such that

1√
n
∥RΩ0 −Λ∥F = oP (1).

We define

Ω∗ := argminΩ∈O(r)W2(p̂RΩ, µΛ), R∗ := RΩ∗.

Denote by µΩΛ the distribution of ΩΛ0 for Ω ∈ O(r) and Λ0 ∼ µΛ. We then have ∥ΛΩT
0Ω∗ −R∗∥F /

√
n =
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oP (1), which implies W2(p̂ΛΩT
0Ω∗

, p̂R∗) = oP (1). Furthermore,

W2(p̂R∗ , µΛ) ≤W2(p̂RΩ0 , µΛ)

≤W2(p̂RΩ0
, p̂Λ) +W2(p̂Λ, µΛ)

≤ 1√
n
∥RΩ0 −Λ∥F +W2(p̂Λ, µΛ) = oP (1).

Invoking triangle inequality, we have

W2(µΩT
∗Ω0Λ, µΛ) ≤W2(µΛ, p̂R∗) +W2(p̂R∗ , p̂ΛΩT

0Ω∗
) +W2(p̂ΛΩT

0Ω∗
, µΩT

∗Ω0Λ)

=W2(µΛ, p̂R∗) +W2(p̂R∗ , p̂ΛΩT
0Ω∗

) +W2(p̂Λ, µΛ).

Combining the above results, we see that W2(µΩT
∗Ω0Λ, µΛ) = oP (1). Notice that the mapping Ω 7→

W2(µΛ, µΩΛ) is continuous on O(r), and W2(µ1, µ2) = 0 if and only if µ1 = µ2. Therefore, by assump-
tion we obtain that ∥ΩT

∗Ω0 − Ir∥F = oP (1), thus ∥R∗ −Λ∥F /
√
n = oP (1). Notice that R is a function of

the observation A, thus R∗ is a function of A as well. Therefore, we have constructed a consistent estimator
for Λ under the metric of vector mean square error. The rest parts of the proof again follow from a standard
truncation argument.

A.3.2 Proof of Theorem 2.3.2

Proof of claim 1
We first prove Eq. (2.6). Define A0 := (

∑n
i=1 ΛiΛ

T
i /n)

−1/2 ∈ S+
r . We note that under the assumptions of

remark 2.3.1, with high probability A0 is well-defined. For j ∈ [d], we let Bj
0 := 1√

n
A2

0

∑n
i=1AijΛi ∈ Rr.

We denote by M r the set of symmetric invertible matrices in Rr×r. Let G ∼ N(0, Ir), independent of
Θ0 ∼ µΘ. We define the mapping fΘ : M r × Rr → Rr such that

fΘ(A,B) := E [Θ0 | Θ0 +AG = B] =

∫
θ exp

(
− 1

2θ
TA−2θ +BTA−2θ

)
µΘ(dθ)∫

exp
(
− 1

2θ
TA−2θ +BTA−2θ

)
µΘ(dθ)

.

Let Θ̂B
j := E[Θj | A,Λ] = fΘ(A0,B

j
0), then Θ̂B

j achieves Bayesian mean square error.
Dominated convergence theorem reveals that fΘ(·, ·) is continuous. By the law of large numbers and

central limit theorem, we see that (A0,B
j
0)

d→ (Q
−1/2
Λ ,Θ0 + Q

−1/2
Λ G) as n, d → ∞. Using Skorokhod’s

representation theorem, there exist (An,B
j
n) and (A∞,B

j
∞) being random vectors defined on the same

probability space, such that (An,B
j
n)

a.s.→ (A∞,B
j
∞), (An,B

j
n)

d
= (A0,B

j
0), and A∞ = Q

−1/2
Λ , Bj

∞
d
= Θ0+

Q
−1/2
Λ G. Therefore, fΘ(A0,B

j
0)

d
= fΘ(An,B

j
n)

a.s.→ fΘ(A∞,B
j
∞). Since ∥fΘ(An,B

j
n)∥2

d
= ∥E[Θj | A,Λ]∥2,

we conclude that the set of random variables
{
∥fΘ(An,B

j
n)∥2 : n ∈ N+

}
is uniformly integrable. Therefore,

we have ∥fΘ(An,B
j
n)∥2

L1→ ∥fΘ(A∞,B
j
∞)∥2. This further implies that as n, d→∞

E[∥Θj − Θ̂B
j ∥2F ] = EΘ0∼µΘ

[∥Θ0∥2]− E
[
∥fΘ(An,B

j
n)∥2

]
→E[∥Θ0∥2]− E

[
∥fΘ(A∞,B∞)∥2

]
=E[∥Θ0∥2]− E

[
∥E[Θ0|Q1/2

Λ Θ0 +G]∥2
]
,

thus completing the proof of the first claim.
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Proof of claim 2
Next, we prove Eq. (2.7). For k, j ∈ [d], k ̸= j, notice that Θk and Θj are conditionally independent condi-
tioning on (A,Λ). Then we have E[ΘT

kΘj | A,Λ] = E[Θk | A,Λ]TE[Θj | A,Λ] = fΘ(A0,B
k
0)

TfΘ(A0,B
j
0),

thus

E[(ΘT
kΘj − E[ΘT

kΘj | A,Λ])2] = rq2Θ − E[(fΘ(A0,B
k
0)

TfΘ(A0,B
j
0))

2].

By the law of large numbers and the central limit theorem, we have (A0,B
j
0,B

k
0)

d→ (Q
−1/2
Λ ,Θ1+Q

−1/2
Λ G1,Θ2+

Q
−1/2
Λ G2), where Θ1,Θ2 ∼ µΘ, G1,G2 ∼ N(0, Ir) are mutually independent. By Skorokhod’s representa-

tion theorem, there exist (An,B
j
n,B

k
n) and (A∞,B

j
∞,B

k
∞) being random vectors on the same probability

space, such that (An,B
j
n,B

k
n)

a.s.→ (A∞,B
j
∞,B

k
∞), (An,B

j
n,B

k
n)

d
= (A0,B

j
0,B

k
0), and A∞ = Q

−1/2
Λ ,

(Bj
∞,B

k
∞)

d
= (Θ1 +Q

−1/2
Λ G1,Θ2 +Q

−1/2
Λ G2). Therefore, as n, d→∞

(fΘ(A0,B
k
0)

TfΘ(A0,B
j
0))

2

d
=(fΘ(An,B

k
n)

TfΘ(An,B
j
n))

2 a.s.→ (fΘ(A∞,B
k
∞)TfΘ(A∞,B

j
∞))2.

Notice that

(fΘ(A0,B
k
0)

TfΘ(A0,B
j
0))

2 ≤∥fΘ(A0,B
k
0)∥2∥fΘ(A0,B

j
0)∥2

≤E[∥Θk∥2 | A,Λ]E[∥Θj∥2 | A,Λ]

=E[∥Θk∥2∥Θj∥2 | A,Λ].

Therefore, the set of random variables {(fΘ(A0,B
k
0)

TfΘ(A0,B
j
0))

2 : n ∈ N+} is uniformly integrable. This
further implies that (fΘ(A0,B

k
0)

TfΘ(A0,B
j
0))

2 L1→ (fΘ(A∞,B
k
∞)TfΘ(A∞,B

j
∞))2, thus as n, d→∞

E[(ΘT
kΘj − E[ΘT

kΘj | A,Λ])2]→ rq2Θ −
∥∥∥E [E[Θ0 | Q1/2

Λ Θ0 +G]E[Θ0 | Q1/2
Λ Θ0 +G]T

] ∥∥∥2
F
,

which concludes the proof of the second claim of the theorem.

A.3.3 Proof of Theorem 2.3.3

By Theorem 2.3.1 claim 3, we see that there exists estimate Λ̂ of Λ, such that ∥Λ− Λ̂∥F /
√
n

P→ 0. Notice
with high probability ∥A∥op ≤ C

√
d for some constant C > 0 that depends uniquely on (µΛ, µΘ), we then

conclude that

1√
nd
∥ATΛ̂−ATΛ∥F ≤

∥A∥op√
d
· ∥Λ− Λ̂∥F√

n
= oP (1).

Since Z is independent of Λ, we immediately see that there exists g ∈ Rd×r that has i.i.d. standard Gaussian
entries and is independent of (Λ,Θ), such that

1√
d

∥∥∥ 1√
n
ATΛ̂Q

−1/2
Λ −ΘQ

1/2
Λ − g

∥∥∥
F
= oP (1). (A.3)
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Proof of the first result

We let G ∼ N(0, Ir), Θ0 ∼ µΘ, independent of each other. Define the mapping F : Rr → Rr, such that

F (y) := E[Θ0 | Q1/2
Λ Θ0 +G = y].

Dominated convergence theorem straightforwardly implies that F is continuous on Rr. Therefore, for any
w ∈ (0, 1), we see that there exists a mapping Fw : Rr → Rr, such that Fw is Lipschitz continuous. In
addition,

E
[
∥F (Q1/2

Λ Θ0 +G)− Fw(Q1/2
Λ Θ0 +G)∥2

]
≤ w2

We denote the Lipschitz constant of Fw by Lw > 0. Let gi ∈ Rr be the i-th row of g. The law of large
numbers gives the following convergence:

1

d

d∑
i=1

∥Θi − F (Q1/2
Λ Θi + gi)∥2

P→ E[∥Θ0∥2]− E
[∥∥∥E[Θ0 | Q1/2

Λ Θ0 +G]
∥∥∥2] .

Therefore, as n, d→∞∣∣∣∣∣1d
d∑
i=1

∥Θi − Fw(Q1/2
Λ Θi + gi)∥2 − E[∥Θ0∥2] + E

[∥∥∥E[Θ0 | Q1/2
Λ Θ0 +G]

∥∥∥2]∣∣∣∣∣ ≤ Cw + oP (1),

where C > 0 is a constant depending only on µΘ. We denote by vi the i-th row of ATΛ̂Q
−1/2
Λ /

√
n. By

assumption we have

1

d

d∑
i=1

∥Fw(Q1/2
Λ Θi + gi)− Fw(vi)∥2 ≤

L2
w

d

d∑
i=1

∥Q1/2
Λ Θi + gi − vi∥2,

which is oP (1) according to Eq. (A.3). Combining the above analysis, we conclude that for any w ∈ (0, 1),
there exists nw ∈ N+, such that for n ≥ nw, there exists estimator Θ̂w ∈ Rd×r, such that with probability
at least 1− w

1

d

d∑
i=1

∥Θi − Fw(vi)∥2 ≤ E[∥Θ0∥2]− E
[∥∥∥E[Θ0 | Q1/2

Λ Θ0 +G]
∥∥∥2]+ 2w + oP (1),

Since w is arbitrary, the rest parts of the proof follow from a simple truncation argument.

Proof of the second result

By analyzing the second moment we obtain that

1

d2

∑
i,j∈[d]

|ΘT
i Θj − F (Q1/2

Λ Θi + gi)
TF (Q

1/2
Λ Θj + gj)|2

= rq2Θ −
∥∥∥E [E[Θ0 | Q1/2

Λ Θ0 +G]E[Θ0 | Q1/2
Λ Θ0 +G]T

] ∥∥∥2
F
+ oP (1).



APPENDIX A. LOW-RANK MATRIX ESTIMATION WITH DIVERGING ASPECT RATIOS 87

Since F is continuous, then for any w ∈ (0, 1), there exists F̃w : R2r → R such that F̃w is L̃w-Lipschitz
continuous. Furthermore,

E
[
|F (Q1/2

Λ Θi + gi)
TF (Q

1/2
Λ Θj + gj)− F̃w(Q1/2

Λ Θi + gi,Q
1/2
Λ Θj + gj)|2

]
≤ w2.

Again through analysis of the second moment we have

1

d2

∑
i,j∈[d]

|ΘT
i Θj − F̃w(Q1/2

Λ Θi + gi,Q
1/2
Λ Θj + gj)|2

≤rq2Θ −
∥∥∥E [E[Θ0 | Q1/2

Λ Θ0 +G]E[Θ0 | Q1/2
Λ Θ0 +G]T

] ∥∥∥2
F
+ C̃w + oP (1),

where C̃ > 0 is a constant depending uniquely on µΘ. By Lipschitzness we have

1

d2

∑
i,j∈[d]

|F̃w(Q1/2
Λ Θi + gi,Q

1/2
Λ Θj + gj)− F̃w(vi,vj)|2

≤ L̃
2
w

d2

∑
i,j∈[d]

{
∥Q1/2

Λ Θi + gi − vi∥2 + ∥Q1/2
Λ Θj + gj − vj∥2

}
,

which by Eq. (A.3) is oP (1). Since w is arbitrary, again the claim follows by applying standard truncation
argument.

A.4 Proof outlines for the weak signal regime

A.4.1 Proof of Theorem 2.4.2

Assume Λ is given, then for any j ∈ [d], the posterior distribution of Θj given (A,Λ) can be expressed as

p(dθj |Λ,A) ∝ exp

(
− 1

2
√
nd

n∑
i=1

⟨Λi,θj⟩2 +
1

4
√
nd

n∑
i=1

Aij⟨Λi,θj⟩2
)
µΘ(dθj).

From the above equation we see that the posterior of Θ given (A,Λ) is a product distribution over Rd, thus
greatly simplifies the analysis. The rest of the proof is similar to that of Theorem 2.3.2, and we skip it for
simplicity.

A.4.2 Proof outline of Theorem 2.4.3

In this section we outline the proof of Theorem 2.4.3. We leave the proofs of technical lemmas to Appendix
A.5. For the sake of simplicity, here we consider only r = 1. We comment that cases with r ≥ 2 can be
proven similarly.
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Free energy density

Note that the posterior distributions that correspond to the symmetric and asymmetric models can be
expressed as follows:

dP(Λ = λ | Y ) =
eHs,n(λ)µ⊗n

Λ (dλ)∫
eHs,n(λ)µ⊗n

Λ (dλ)
,

dP(Λ = λ,Θ = θ | A) =
eHn(λ,θ)µ⊗d

Θ (dθ)µ⊗n
Λ (dλ)∫

eHn(λ,θ)µ⊗d
Θ (dθ)µ⊗n

Λ (dλ)
,

where µ⊗n
Λ (dλ) (µ⊗d

Θ (dθ)) is the product distribution over Rn (Rd) with each coordinate having marginal
distribution µΛ (µΘ), and Hs,n, Hn are the Hamiltonians that correspond to models (2.9) and (2.8), respec-
tively:

Hs,n(λ) :=
q2Θ
2n
⟨Λ,λ⟩2 + qΘ

2
λ⊺Wλ− q2Θ

4n
∥λ∥4,

Hn(λ,θ) :=
1√
nd
⟨Λ,λ⟩⟨Θ,θ⟩+ 1

4
√
nd

λTZθ − 1

2
√
nd
∥λ∥2∥θ∥2.

(A.4)

Following the terminology of statistical mechanics, the free energy density is defined as the expected log-
partition function (also known as log normalizing constant):

Ψsn :=
1

n
E log

∫
eHs,n(λ)µ⊗n

Λ (dλ),

Ψn :=
1

n
E log

∫
eHn(λ,θ)µ⊗n

Λ (dλ)µ⊗d
Θ (dθ).

The lemma below connects free energy densities with the corresponding mutual informations.

Lemma A.4.1. The following equations hold:

Ψsn =
q2ΘE[Λ

2
0]

2

4
− Isymm

n (µΛ; qΘ) + on(1),

Ψn =
q2ΘE[Λ

2
0]

2

4
− Iasym

n (µΛ, µΘ) + on(1).

Proof. By definition, the mutual information that corresponds to the symmetric model can be reformulated
as

Isymm
n (µΛ; qΘ) =

1

n
E
{
log

dµ⊗n
Λ (Λ) · exp(Hs,n(Λ))

dµ⊗n
Λ (Λ) ·

∫
exp(Hs,n(λ))dµ

⊗n
Λ (λ)

}
=
q2ΘE[Λ

2
0]

2

4
−Ψsn.

The asymmetric mutual information is a slightly more complicated, which we write below

Iasym
n (µΛ, µΘ)

=
1

n
E
{
log

dµ⊗n
Λ (Λ) ·

∫
exp(Hn(Λ,θ))dµ

⊗n
Θ (θ)

dµ⊗n
Λ (Λ) ·

∫
exp(Hn(λ,θ))dµ

⊗n
Λ (λ)dµ⊗n

Θ (θ)

}
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=
1

n

d∑
i=1

E
{
log

∫
exp

(
1√
nd
∥Λ∥2Θiθi +

1
4
√
nd
⟨Z·i,Λ⟩θi −

1

2
√
nd
∥Λ∥2θ2

i

)
µΘ(dθi)

}
−Ψn

=
d

n
E
{
log

∫
exp

(
1√
nd
∥Λ∥2Θ1θ1 +

1
4
√
nd
⟨Z·1,Λ⟩θ1 −

1

2
√
nd
∥Λ∥2θ2

1

)
µΘ(dθ1)

}
−Ψn.

Define

F (q) = E
{
log

∫
exp

(
qΘ0θ +

√
qGθ − 1

2
qθ2

)
µΘ(dθ)

}
,

where the expectation is taken over Θ0 ∼ µΘ,G ∼ N(0, 1) that are independent of each other. Applying
Stein’s lemma, we obtain that for q > 0, F (q) has second order continuous derivatives satisfying

F ′(q) =
1

2
E
{
E[Θ0 |

√
qΘ0 +G]2

}
,

F ′′(q) =E
{
1

2
E[Θ2

0 |
√
qΘ0 +G]2 +

1

2
E[Θ0 |

√
qΘ0 +G]4 − E[Θ0 |

√
qΘ0 +G]2E[Θ2

0 |
√
qΘ0 +G]

}
.

Since µΘ has mean zero, we conclude that F also has second order continuous derivatives at zero, and
F ′(0) = 0, F ′′(0) = q2Θ/2. These arguments imply that

Iasym
n (µΛ, µΘ) =

d

n
E
{
F

(
1√
nd
∥Λ∥2

)}
−Ψn =

q2ΘE[Λ
2
0]

2

4
−Ψn + on(1),

which concludes the proof of the lemma.

From Lemma A.4.1 we see that in order to prove the theorem, it suffices to show that the free energy densities
agree asymptotically:

lim
n→∞

Ψsn = lim
n,d→∞

Ψn. (A.5)

Asymptotic equivalence of free energy densities

We then proceed to prove Eq. (A.5). We will start with the additional constraint that µΛ has bounded
support. Later in Appendix A.4.4, we show that proofs for general µΛ can be reduced to the bounded case.

Assumption A.4.1. We assume that support (µΛ) ⊆ [−K,K], with K > 0 being some fixed constant that
is independent of n, d.

For h, s ≥ 0, we define the perturbations

Y ′(h) =

√
h

n
ΛΛT +W ′,

x′(s) =
√
sΛ+ g′,

where W ′ d
= GOE(n) and g′ d

= N(0, In). Furthermore, we require that (W ′, g′,Λ,Θ,Z,W ) are mutually
independent. We define the Hamiltonians associated with the perturbations Y ′(h) and x′(s) respectively as
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follows:

Hn(λ;Y
′(h)) :=

h

2n
⟨Λ,λ⟩2 +

√
h

2
λTW ′λ− h

4n
∥λ∥4, (A.6)

Hn(λ;x
′(s)) :=

√
s⟨λ, g′⟩+ s⟨Λ,λ⟩ − s

2
∥λ∥2. (A.7)

The posterior distribution of Λ given (A,Y ′(h),x′(s)) can be expressed as

µ(dλ) =
1

Zn(h, s)
µ⊗n
Λ (dλ)

∫
exp

(
Hn(λ,θ) +Hn(λ;Y

′(h)) +Hn(λ;x
′(s))

)
µ⊗d
Θ (dθ),

where Zn(h, s) is the normalizing constant:

Zn(h, s) =

∫
exp

(
Hn(λ,θ) +Hn(λ;Y

′(h)) +Hn(λ;x
′(s))

)
µ⊗d
Θ (dθ)µ⊗n

Λ (dλ).

Note that Zn(h, s) is random and depends on (A,Y ′(h),x′(s)). We define the free energy density that
corresponds to observations (A,Y ′(h),x′(s)) as

Φn(h, s) :=
1

n
E [logZn(h, s)] . (A.8)

The next equation follows from Gaussian integration by parts and Nishimori identity (Lemma A.2.3):

∂

∂h
Φn(h, s) =

1

4n2
E
[
⟨ΛΛT,E[ΛΛT | A,Y ′(h),x′(s)]⟩

]
. (A.9)

Eq. (A.9) holds for all h > 0, s ≥ 0, and is directly related to the MMSE in the perturbed model. The rest
parts of the proof will be devoted to proving convergence of Φn(h, s) as n, d→∞.

To this end, we first show that asymptotically speaking, the free energy density depends on µΘ only
through its second moment. More precisely, we can replace µΘ with a Gaussian distribution which has mean
zero and variance qΘ. This vastly simplifies further computation.

Lemma A.4.2. For k ∈ [d], we let PΘ,k be a distribution over Rd with independent coordinates, such that
(θ1,θ2, · · · ,θd) ∼ PΘ,k if and only if θ1, · · · ,θk iid∼ µΘ and θk+1, · · · ,θd iid∼ N(0, qΘ). We define

Φ(k)
n (h, s) :=

1

n
E
[
log

(∫
exp(Hn(λ,θ) +Hn(λ;Y

′(h)) +Hn(λ;x
′(s)))µ⊗n

Λ (dλ)dPΘ,k(θ)

)]
.

In the above expression, the expectation is taken over (Λ,Θ,Z,W ′, g′). Notice that by definition Φn(h, s) =

Φ
(d)
n (h, s). Then under the conditions of Theorem 2.4.3 and in addition Assumption A.4.1, as n, d→∞ we

have Φn(h, s)− Φ
(0)
n (h, s) = on(1) for all fixed h, s ≥ 0.

Lemma A.4.2 can be proved via a Lindeberg type argument, and we postpone the details to Appendix
A.5.1. According to Lemma A.4.2, in order to derive the limiting expression of Φn(h, s), it suffices to compute
the limit of Φ(0)

n (h, s) instead, which can be done via Gaussian integration techniques.

Lemma A.4.3. For fixed h, s ≥ 0, we define

H̃n(λ;Y
′(h),x′(s)) :=

q2Θ
2n
⟨Λ,λ⟩2 + qΘ

2
√
nd
∥ZTλ∥2 − dqΘ

2
√
nd
∥λ∥2 − q2Θ

4n
∥λ∥4
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+Hn(λ;Y
′(h)) +Hn(λ;x

′(s)),

Φ̃n(h, s) :=
1

n
E
[
log
(∫

exp
(
H̃n(λ;Y

′(h),x′(s))
)
µ⊗n
Λ (dλ)

)]
.

Then under the conditions of Theorem 2.4.3 and Assumption A.4.1, as n, d → ∞, we have Φ̃n(h, s) −
Φ

(0)
n (h, s) = on(1).

We defer the proof of Lemma A.4.3 to Appendix A.5.2. Under the asymptotics n, d→∞, d/n→∞, ac-
cording to [13], the matrix

(
ZZT − dIn

)
/
√
nd behaves like a GOE(n) matrix. Replacing

(
ZZT − dIn

)
/
√
nd

with a GOE(n) matrix in the definition of Φ̃n(h, s), we see that this allows us to approximate Φ̃n(h, s) via
the free energy density of the symmetric model (2.9). Such heuristics can be made rigorous via the following
lemma:

Lemma A.4.4. Recall that Y is defined in Eq. (2.9). For h, s ≥ 0, we define the free energy density ΦYn (h, s)

that corresponds to the observations (Y ,Y ′(h),x′(s)) as

ΦYn (h, s) :=
1

n
E
[
log

(∫
exp

(
HY
n (λ) +Hn(λ;Y

′(h)) +Hn(λ;x
′(s))

)
µ⊗n
Λ (dλ)

)]
, (A.10)

HY
n (λ) :=

q2Θ
2n
⟨Λ,λ⟩2 + qΘ

2
λTWλ− q2Θ

4n
∥λ∥4.

Then under the conditions of Theorem 2.4.3 and Assumption A.4.1, as n, d → ∞, we have ΦYn (h, s) −
Φ̃n(h, s) = on(1).

We defer the proof of Lemma A.4.4 to Appendix A.5.3. Combining Lemmas A.4.2 to A.4.4, we conclude
that as n, d → ∞, for all fixed h, s ≥ 0, we have Φn(h, s) − ΦYn (h, s) = on(1). This relates the asymmetric
model to the symmetric model through their free energy densities. The following lemma summarizes this
result and lists several additional useful properties for future reference.

Lemma A.4.5. Under the conditions of Theorem 2.4.3 and Assumption A.4.1, for all fixed h, s ≥ 0, the
following claims hold:

1. As n, d→∞, we have Φn(h, s) = ΦYn (h, s) + on(1).

2. The following mappings x 7→ Φn(h, x), x 7→ Φn(x, s), x 7→ ΦYn (h, x), x 7→ ΦYn (x, s) are all convex on
[0,∞) and differentiable on (0,∞).

3. limn→∞ ΦYn (0, s) exists for all

(q2Θ, s) ∈ {(tx, (1− t)xq∗(x)) : x ≥ 0, q∗(x) exists and is unique, t ∈ [0, 1]},

where F(·, ·) is defined in Eq. (2.12) and

q∗(x) := argmaxq≥0 F(x, q). (A.11)

Remark A.4.1. By [125, Proposition 17], q∗(x) exists and is unique for all but countably many x > 0.
Claims 2 and 3 do not rely on Assumption A.4.1.
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We delay the proof of Lemma A.4.5 to Appendix A.5.4. We note that Theorem 2.4.3 is an immediate
consequence of Lemma A.4.5.

A.4.3 Proof of Theorem 2.4.4

In this section, we will apply Lemma A.4.5 to prove Theorem 2.4.4. Using Lemma A.2.3 and Gaussian
integration by parts, for all h > 0 we have

∂

∂h
Φn(h, 0) =

1

4n2
E
[
⟨ΛΛT,E[ΛΛT | A,Y ′(h)]

]
,

∂

∂h
ΦYn (h, 0) =

1

4n2
E
[
⟨ΛΛT,E[ΛΛT | Y ,Y ′(h)]⟩

]
.

(A.12)

Recall that F is defined in Eq. (2.12). We let

D := {s > 0 | F(s, ·) has a unique maximizer q∗(s)} . (A.13)

By proposition 17 in [125], D is equal to (0,+∞) minus a countable set, and is precisely the set of s > 0 at
which the function ϕ : s 7→ supq≥0 F(s, q) is differentiable. Furthermore, by [125, Theorem 13], for all h ≥ 0,

lim
n→∞

ΦYn (h, 0) = sup
q≥0
F(q2Θ + h, q). (A.14)

By the first claim of Lemma A.4.5, Φn(h, 0) = ΦYn (h, 0)+on(1), thus limn→∞ Φn(h, 0) = supq≥0 F(q2Θ+h, q).
By the second claim of Lemma A.4.5, the mappings h 7→ Φn(h, 0), h 7→ ΦYn (h, 0) are convex and differentiable
on (0,∞). Next, we apply Lemma A.2.4 to function sequences {h 7→ Φn(h, 0)}n≥1, {h 7→ ΦYn (h, 0)}n≥1, and
conclude that for all but countably many values of h > 0,

lim
n→∞

∂

∂h
Φn(h, 0) = lim

n→∞

∂

∂h
ΦYn (h, 0) = ϕ′(h+ q2Θ). (A.15)

From the above equation we see that the mapping λ 7→ ϕ′(λ) is non-decreasing on D. Therefore, for all
but countably many qΘ > 0, ϕ′ is continuous at q2Θ ∈ D. For these qΘ, we immediately see that for any
ε > 0, there exists hε > 0 depending uniquely on (qΘ, ε, µΛ), such that ϕ′(q2Θ + hε) ≤ ϕ′(q2Θ) + ε, and ϕ is
differentiable at q2Θ + hε. According to Eq. (A.15), there exists nε ∈ N+, such that for all n ≥ nε,∣∣∣ ∂

∂h
Φn(hε, 0)− ϕ′(hε + q2Θ)

∣∣∣ ≤ ε.
According to Eq. (A.12),

∂

∂h
Φn(h, 0) ≥

1

4n2
E
[
⟨ΛΛT,E[ΛΛT | A]⟩

]
=

1

4n2
(
nEΛ0∼µΛ

[Λ4
0] + n(n− 1)EΛ0∼µΛ

[Λ2
0]

2 − n2MMSEasym
n (µΛ, µΘ)

)
.

Invoking Proposition 17 and Corollary 18 from [125], for all q2Θ ∈ D

ϕ′(q2Θ) =
1

4
q∗(q2Θ)

2 =
1

4
EΛ0∼µΛ

[Λ2
0]

2 − 1

4
lim
n→∞

MMSEsymm
n (µΛ; qΘ) + on(1).
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Combining all arguments above, we obtain that

lim inf
n,d→∞

MMSEasym
n (µΛ, µΘ) ≥ lim

n→∞
MMSEsymm

n (µΛ; qΘ)− 8ε.

Since ε is arbitrary, we then complete the proof of the first claim of the theorem.
We then proceed to prove the second claim. For q2Θ, q

2
Θ + η ∈ D satisfying 0 < η < ε, by Eqs. (A.12)

and (A.15) we have

lim
n,d→∞

MMSEasym
n (µΛ, µΘ; η) =EΛ0∼µΛ

[Λ2
0]

2 − 4ϕ′(q2Θ + η)

≤EΛ0∼µΛ
[Λ2

0]
2 − 4ϕ′(q2Θ)

= lim
n→∞

MMSEsymm
n (µΛ; qΘ).

Note that limn,d→∞ MMSEasym
n (µΛ, µΘ; η) ≥ lim supn,d→∞ MMSEasym

n (µΛ, µΘ; ε), the proof of the second
claim immediately follows.

A.4.4 Reduction to bounded prior

In this section, we show that in order to prove Theorem 2.4.3 and Theorem 2.4.4, it suffices to prove the
theorems under Assumption A.4.1.

Since µΛ is sub-Gaussian, for any ε > 0, there exists Kε > 0, such that if we let Λ̄0 := Λ01{|Λ0| ≤ Kε},
then EΛ0∼µΛ [(Λ0 − Λ̄0)

4] < ε and µΛ([−Kε,Kε]) > 1− ε2. For all i ∈ [n], we define Λ̄i := Λi1{|Λi| ≤ Kε}
and λ̄i := λi1{|λi| ≤ Kε}. Let Λ̄ = (Λ̄i)i≤n ∈ Rn and λ̄ = (λ̄i)i≤n ∈ Rn. We introduce the truncated
Hamiltonians:

H̄ε
n(λ̄,θ) :=

1√
nd
⟨Λ̄, λ̄⟩⟨Θ,θ⟩+ 1

4
√
nd

λ̄TZθ − 1

2
√
nd
∥λ̄∥2∥θ∥2,

H̄Y,ε
n (λ̄) :=

q2Θ
2n
⟨Λ̄, λ̄⟩2 + qΘ

2
λ̄TWλ̄− q2Θ

4n
∥λ̄∥4.

Recall that W ′ d
= GOE(n) and is independent of (W ,Z). For s, q, h ≥ 0, we define the truncated versions

of ΦYn , Φn and F as

Φ̄Y,εn (h) :=
1

n
E

[
log

(∫
exp

(
H̄Y,ε
n (λ̄) +

h

2n
⟨Λ̄, λ̄⟩2 +

√
h

2
λ̄TW ′λ̄− h

4n
∥λ̄∥4

)
µ⊗n
Λ̄

(dλ̄)

)]
,

Φ̄εn(h) :=
1

n
E

[
log

(∫
exp

(
H̄ε
n(λ̄,θ) +

h

2n
⟨Λ̄, λ̄⟩2 +

√
h

2
λ̄TW ′λ̄− h

4n
∥λ̄∥4

)
µ⊗n
Λ̄

(dλ̄)µ⊗d
Θ (dθ)

)]
,

F̄ε(s, q) := −s
4
q2 + EZ∼N(0,1),Λ0∼µΛ

[
log

(∫
exp

(√
sqZλ̄+ sqλ̄Λ̄0 −

s

2
qλ̄2
)
µΛ̄(dλ̄)

)]
.

In the above display, µΛ̄ stands for the law of Λ̄0. The following lemma states that Φ̄εn(h) is close to Φn(h, 0)

for small ε.

Lemma A.4.6. Under the conditions of Theorem 2.4.3, there exists a constant C0 > 0, which is a function
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of (µΛ, µΘ) only, such that for n, d large enough, the following inequality holds for all h ∈ [0, 1]:

∣∣Φn(h, 0)− Φ̄εn(h)
∣∣ ≤ C0

4
√
ε.

The proof of Lemma A.4.6 is deferred to Appendix A.5.5. Furthermore, according to Lemma 46 from
[125], F is also close to F̄ε for ε small.

Lemma A.4.7 (Lemma 46 from [125]). Under the conditions of Theorem 2.4.3, there exists a constant
K ′ > 0 that depends only on µΛ, such that∣∣∣∣sup

q≥0
F(s, q)− sup

q≥0
F̄ε(s, q)

∣∣∣∣ ≤ sK ′ε.

Invoking the convergence results of free energy density for the symmetric spiked model [125], we have∣∣∣∣Φ̄Y,εn (h)− sup
q≥0
F̄ε(q2Θ + h, q)

∣∣∣∣ = on(1).

Applying Lemma A.4.5 to the truncated distribution µΛ̄, we obtain that |Φ̄Y,εn (h) − Φ̄εn(h)| = on(1) for all
h ≥ 0. Using this result and Lemma A.4.6, A.4.7, we derive that for all h ∈ [0, 1],

∣∣Φn(h, 0)− ΦYn (h, 0)
∣∣

≤
∣∣Φn(h, 0)− Φ̄εn(h)

∣∣+ ∣∣Φ̄εn(h)− Φ̄Y,εn (h)
∣∣+ ∣∣Φ̄Y,εn (h)− sup

q≥0
F̄ε(q2Θ + h, q)

∣∣
+
∣∣ sup
q≥0
F̄ε(q2Θ + h, q)− sup

q≥0
F(q2Θ + h, q)

∣∣+ ∣∣ sup
q≥0
F(q2Θ + h, q)− ΦYn (h, 0)

∣∣
≤C0

4
√
ε+ (q2Θ + 1)K ′ε+ on(1).

Since ε is arbitrary, we then have the following lemma:

Lemma A.4.8. Under the conditions of Theorem 2.4.3, for all h ∈ [0, 1], as n, d→∞ we have

lim
n,d→∞

|Φn(h, 0)− ΦYn (h, 0)| = 0.

Theorem 2.4.3 is a direct consequence of Lemma A.4.8. The remainder proof of Theorem 2.4.4 follows
exactly the same procedure as stated in Appendix A.4.3, and here we skip it for the sake of simplicity.

A.4.5 Proof outline of Theorem 2.4.5

We state the proof outline of Theorem 2.4.5 in this section. The proofs of supporting lemmas are delayed to
Appendix A.6. For the sake of simplicity, here we only consider the rank-one case r = 1. We comment that
proof for r ≥ 2 can be conducted analogously.

Proof outline of Theorem 2.4.5 under condition (a)

Since µΛ is sub-Gaussian, there exists a constant K0 > 0 depending only on µΛ, such that for all x > 0

P(|Λ0| ≥ x) ≤ 2 exp(−x2/K2
0 ). (A.16)
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For all i ∈ [n], we define Λ̄i := Λi1{|Λi| ≤ 2K0

√
log n}, Λ̄ := (Λ̄1, · · · , Λ̄n)

T ∈ Rn and Ā := Λ̄ΘT/ 4
√
nd +

Z ∈ Rn×d. The next lemma says that truncation does not decrease the MMSE too much.

Lemma A.4.9. Under the conditions of Theorem 2.4.5 (a) , as n, d→∞ we have

1

n2
E
[∥∥∥ΛΛT − E[ΛΛT | A]

∥∥∥2
F

]
≤ 1

n2
E
[∥∥∥Λ̄Λ̄T − E[Λ̄Λ̄T | Ā]

∥∥∥2
F

]
+ on(1).

We leave the proof of Lemma A.4.9 to Appendix A.6.1. By Lemma A.4.9, in order to prove the theorem,
it suffices to show that under the current conditions, for all but countably many values of qΘ > 0,

lim sup
n,d→∞

1

n2
E
[∥∥∥Λ̄Λ̄T − E[Λ̄Λ̄T | Ā]

∥∥∥2
F

]
≤ lim
n→∞

MMSEsymm
n (µΛ; qΘ). (A.17)

We let ZΘ = ∥Θ∥ · g, where g ∼ N(0, In) is independent of (Θ,Λ). We denote by Z ′ an independent
copy of Z, such that Z ′ is further independent of (Θ,Λ, g). Furthermore, we can choose Z ′ such that
(Θ,Λ, g,ZP⊥

ΘZT) = (Θ,Λ, g,Z ′P⊥
ΘZ ′T), where P⊥

Θ denotes the projection onto the null space of Θ.
We define Y 1 := (ĀĀT − dIn)/

√
d. Then Y 1 admits the following decomposition:

Y 1 =
∥Θ∥2√
nd

Λ̄Λ̄T +
∥Θ∥

n1/4d3/4
Λ̄gT +

∥Θ∥
n1/4d3/4

gΛ̄T +
1√
d
(ZP⊥

ΘZT − dIn) +
1√
d
ggT

=
1√
n

(
q
1/2
Θ Λ̄+ r−1

n g
)(

q
1/2
Θ Λ̄+ r−1

n g
)T

+
1√
d
(Z ′Z ′T − dIn) +E.

In the above display, the n× n symmetric matrix E is defined as follows:

E :=− 1√
d∥Θ∥2

Z ′ΘΘTZ ′T +
1√
n

(∥Θ∥2
d
− qΘ

)
Λ̄Λ̄T

+
1

n1/4d1/4

(∥Θ∥√
d
− q1/2Θ

)(
Λ̄gT + gΛ̄T

)
+

1√
d
ggT.

We define the set

Ω1 :=

{∣∣∣1
d
∥Θ∥2 − qΘ

∣∣∣ ≤ C1

√
log n√
d

,
1√
d
|(Z ′Θ)i| ≤ C1

√
log n,

1√
d
|gi| ≤ C1

√
log n for all i ∈ [n]

}
,

where C1 > 0 is a constant depending only on µΘ. Since µΘ, µΛ are sub-Gaussian distributions, if we choose
C1 large enough, then we have P(Ω1) = 1− on(1). Using the definition of Ω1, we conclude that there exists
a constant C2 > 0 that depends only on (C1,K0, µΘ), such that on Ω1 we have |Eij | ≤ C2 log n/

√
d for all

i, j ∈ [n]. For some absolute constant C3 > 0, we let ḡ ∈ Rn such that ḡi := gi1{|gi| ≤ C3

√
log n} for all

i ∈ [n]. Direct computation reveals that for C3 large enough, we have P(ḡ ̸= g)→ 0 as n, d→∞.
Define

Y 2 :=
1√
n

(
q
1/2
Θ Λ̄+ r−1

n ḡ
)(

q
1/2
Θ Λ̄+ r−1

n ḡ
)T

+G,

where G ∼ √nGOE(n) and is independent of (Λ, Λ̄,Θ, g, ḡ). By [40, Theorem 4], under condition (a), there
exists a coupling such that as n, d → ∞, with probability 1 − on(1) we have (Z ′Z ′T − dIn)/

√
d = G. We

define Ω2 := Ω1 ∩ {Y 2 = Y 1 −E}, then we see that P(Ω2)→ 1 as n, d→∞.
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For X ∈ Rn×n, we define

Mn(X) :=
1

n
E
[(
q
1/2
Θ Λ̄+ r−1

n ḡ
)(
q
1/2
Θ Λ̄+ r−1

n ḡ
)T∣∣Y 2 = X

]
.

Then for any i, j, k, s ∈ [n], we have

∂Mn(X)ks
∂Xij

=
1

n3/2
E
[
(q

1/2
Θ Λ̄i + r−1

n ḡi)(q
1/2
Θ Λ̄j + r−1

n ḡj)(q
1/2
Θ Λ̄k + r−1

n ḡk)(q
1/2
Θ Λ̄s + r−1

n ḡs) | Y 2 = X
]

− 1

n3/2
E
[
(q

1/2
Θ Λ̄i + r−1

n ḡi)(q
1/2
Θ Λ̄j + r−1

n ḡj) | Y 2 = X
]
E
[
(q

1/2
Θ Λ̄k + r−1

n ḡk)(q
1/2
Θ Λ̄s + r−1

n ḡs) | Y 2 = X
]
.

Note that on Ω2 we have |Λ̄i| ≤ 2K0

√
log n, |ḡi| ≤ C3

√
log n, and |Eij | ≤ C2 log n/

√
d for all i, j ∈ [n].

Therefore, we conclude that there exists a constant C4 > 0 depending only on (K0, µΘ, C1, C2, C3), such
that on Ω2 we have

|Mn(Y 1)ks −Mn(Y 1 −E)ks| ≤
C4
√
n(log n)3√
d

.

Therefore, we obtain that

E
[
∥Mn(Y 1 −E)−Mn(Y 1)∥2F1Ω2

]
≤ C2

4n
3(log n)6

d
.

The right hand side of the above equation vanishes as n, d → ∞ under condition (a). Therefore, we derive
that ∥Mn(Y 2)−Mn(Y 1)∥F = oP (1). Note that Y 1 is a function of Ā. Using standard truncation argument,
we conclude that in order to prove Eq. (A.17), it suffices to show

lim sup
n,d→∞

E
[∥∥∥q−1

Θ Mn(Y 2)−
1

n
Λ̄Λ̄T

∥∥∥2
F

]
≤ lim
n→∞

MMSEsymm
n (µΛ; qΘ),

which we prove in Lemma A.4.10 below. The proof of this lemma is deferred to Appendix A.6.2.

Lemma A.4.10. Under the conditions of Theorem 2.4.5 (a), for all but countably many values of qΘ > 0,
we have

lim
n→∞

E
[∥∥∥q−1

Θ Mn(Y 2)−
1

n
Λ̄Λ̄T

∥∥∥2
F

]
= lim
n→∞

MMSEsymm
n (µΛ; qΘ).

Proof outline of Theorem 2.4.5 under condition (b)

Truncation

By assumption, there exists 0 < K1 < ∞ such that support(µΛ) ⊆ [−K1,K1]. Since µΘ is sub-Gaussian,
there exists K2 > 0 which depends only on µΘ, such that for all x > 0

PΘ0∼µΘ
(|Θ0| ≥ x) ≤ 2 exp(−x2/K2

2 ). (A.18)

For j ∈ {0}∪[d], we define Θ̄j := Θj1{|Θj | ≤ 2K2

√
log d}, Θ̄ := (Θ̄1, · · · , Θ̄d)

T ∈ Rd and Ā := ΛΘ̄T/ 4
√
nd+

Z. Note that Ā defined here is not to be confused with Ā defined in Appendix A.4.5. The following lemma
states that truncation does not decrease the asymptotic matrix MMSE.
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Lemma A.4.11. Under the conditions of Theorem 2.4.5 (b), as n, d→∞ we have

1

n2
E
[∥∥∥ΛΛT − E[ΛΛT | A]

∥∥∥2
F

]
≤ 1

n2
E
[∥∥∥ΛΛT − E[ΛΛT | Ā]

∥∥∥2
F

]
+ on(1).

We postpone the proof of the lemma to Appendix A.6.3. By Lemma A.4.11, in order to prove Theo-
rem 2.4.5 under condition (b), we only need to show for all but countably many values of qΘ > 0,

lim sup
n,d→∞

1

n2
E
[∥∥∥ΛΛT − E[ΛΛT | Ā]

∥∥∥2
F

]
≤ lim
n→∞

MMSEsymm
n (µΛ; qΘ).

Model with extra perturbation

For s, h, a, a′ ≥ 0 and {εn}n≥1, {ε′n}n≥1 ⊆ R+, we introduce a perturbed model sequence, such that for each
n, we observe (Ā(s),x′(a′), x̄(a),Y ′(h)) defined as follows:

Ā(s) :=

√
s

4
√
nd

ΛΘ̄T +Z, (A.19)

x′(a′) := a′
√
ε′nΛ+ g′, (A.20)

x̄(a) := a

√
nεn
d

Θ̄+ g, (A.21)

Y ′(h) :=

√
h

n
ΛΛT +W ′, (A.22)

where g ∼ N(0, Id), g′ ∼ N(0, In), W ′ ∼ GOE(n), mutually independent and are independent of everything
else. Note that Ā(1) = Ā. Furthermore, we assume that εn, ε′n → 0+ as n, d→∞. We can associate to the
observation (A.19) the Hamiltonian

H̄ [s]
n (λ, θ̄) =

∑
i∈[n],j∈[d]

{
s√
nd

ΛiλiΘ̄j θ̄j +

√
s

4
√
nd
Zijλiθ̄j −

s

2
√
nd

λ2
i θ̄

2
j

}
, (A.23)

where θ̄j = θj1{|θj | ≤ 2K2

√
log d}. For the sake of simplicity, we let H̄n(λ, θ̄) = H̄

[1]
n (λ, θ̄). Similarly, we

can associate to the observations (A.20) and (A.21) the following Hamiltonians, respectively:

H̄(pert)

n,λ (λ) =

n∑
i=1

{√
ε′na

′λig
′
i + a′

2
ε′nΛiλi −

a′
2
ε′n
2

λ2
i

}
,

H̄(pert)

n,θ (θ̄) =

d∑
j=1

{√
nεn
d
aθ̄jgj +

a2nεn
d

Θ̄j θ̄j −
a2nεn
2d

θ̄2
j

}
.

We then define the “total” Hamiltonian, which corresponds to all observations in the perturbed model as

H̄(tot)

n (λ, θ̄) := H̄ [s]
n (λ, θ̄) + H̄(pert)

n,λ (λ) + H̄(pert)

n,θ (θ̄) +Hn(λ;Y
′(h)),

where we recall that Hn(λ;Y
′(h)) is defined in Eq. (A.6). The posterior distribution of (Λ, Θ̄) given

observations (Ā(s),x′(a′), x̄(a),Y ′(h)) can be expressed as

µ(dλ,dθ̄ | Ā(s),x′(a′), x̄(a),Y ′(h)) ∝ exp(H̄(tot)
n (λ, θ̄))µ⊗n

Λ (dλ)µ⊗d
Θ̄

(dθ̄).
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We define the free energy functionals corresponding to the total Hamiltonian as

ϕ̄n(s, a, a
′, h) :=

1

n
log

∫
exp(H̄(tot)

n (λ, θ̄))µ⊗n
Λ (dλ)µ⊗d

Θ̄
(dθ̄),

Φ̄n(s, a, a
′, h) := E

[
ϕ̄n(s, a, a

′, h)
]
,

(A.24)

where µ⊗d
Θ̄

is the product distribution over Rd with each coordinate distributed as Θ̄0.

Truncation does not change the asymptotic free energy density

Next, we show that truncation does not change the asymptotic free energy density.

Lemma A.4.12. For s, h ≥ 0, we define the following unperturbed Hamiltonian and free energy density

H [s]
n (λ,θ) :=

∑
i∈[n],j∈[d]

{
s√
nd

ΛiλiΘjθj +

√
s

4
√
nd
Zijλiθj −

s

2
√
nd

λ2
iθ

2
j

}
,

Φn(s, 0, 0, h) :=
1

n
E
[
log

∫
exp(H [s]

n (λ,θ) +Hn(λ;Y
′(h)))µ⊗n

Λ (dλ)µ⊗d
Θ (dθ)

]
.

Then for all fixed S0 > 0, under the conditions of Theorem 2.4.5 (b), as n, d→∞ we have

sup
h≥0,S0≥s≥0

|Φn(s, 0, 0, h)− Φ̄n(s, 0, 0, h)| = on(1).

The proof of Lemma A.4.12 is given in Appendix A.6.4. We further characterize the convergence of free
energy density in Lemma A.4.13, again postponing the proof to Appendix A.6.5.

Lemma A.4.13. Recall that F(·, ·) is defined in Eq. (2.12). Under the conditions of Theorem 2.4.5 (b), if
we further assume that εn, ε′n → 0+, then for all fixed s, h ≥ 0, as n, d→∞

lim
n,d→∞

sup
a,a′∈[0,10]

∣∣∣∣Φ̄n(s, a, a′, h)− sup
q≥0
F(q2Θs2 + h, q)

∣∣∣∣ = 0.

Recall that D is defined in Eq. (A.13). For all h + q2Θ ∈ D, the mapping s 7→ supq≥0 F(q2Θs2 + h, q)

is differentiable at s = 1. Furthermore, for all fixed a, a′, h ≥ 0, the mappings s 7→ Φ̄n(s, a, a
′, h),

s 7→ Φ̄n(s, 0, 0, h) are convex differentiable on (0,∞). By Lemmas A.4.12 and A.4.13, as n, d → ∞,
Φ̄n(s, a, a

′, h)→ supq≥0 F(q2Θs2+h, q) and Φ̄n(s, 0, 0, h)→ supq≥0 F(q2Θs2+h, q). Then we apply Lemma A.2.4
and conclude that for h+ q2Θ ∈ D, we have∣∣∣∣ ∂∂s Φ̄n(s, a, a′, h)∣∣∣s=1

− ∂

∂s
Φ̄n(s, 0, 0, h)

∣∣∣
s=1

∣∣∣∣ = on(1).

Using Gaussian integration by parts and Nishimori identity, we further derive that for h+ q2Θ ∈ D

lim
n,d→∞

1

2n
√
nd

E
[
∥E[ΛΘ̄T | Ā(1), x̄(a),x′(a′),Y ′(h)]− E[ΛΘ̄T | Ā(1),Y ′(h)]∥2F

]
= 0. (A.25)
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By Jensen’s inequality, for all a, a′ ∈ [1, 2]

1

2n
√
nd

E
[
∥E[ΛΘ̄T | Ā(1), x̄(a),x′(a′),Y ′(h)]− E[ΛΘ̄T | Ā(1),Y ′(h)]∥2F

]
≤ 1

2n
√
nd

E
[
∥E[ΛΘ̄T | Ā(1), x̄(2),x′(2),Y ′(h)]− E[ΛΘ̄T | Ā(1),Y ′(h)]∥2F

]
.

By Eq. (A.25), the last line above converges to zero as n, d→∞ for all q2Θ + h ∈ D. In this case, we have

lim
n,d→∞

∫ 2

1

∫ 2

1

1

2n
√
nd

E
[
∥E[ΛΘ̄T | Ā(1), x̄(a),x′(a′),Y ′(h)]− E[ΛΘ̄T | Ā(1),Y ′(h)]∥2F

]
dada′ = 0. (A.26)

We define

Λs,a,a′,h := E[Λ | Ā(1), x̄(a),x′(a′),Y ′(h)] ∈ Rn,

Θ̄s,a,a′,h := E[Θ̄ | Ā(1), x̄(a),x′(a′),Y ′(h)] ∈ Rd,

M s,a,a′,h := E[ΛΘ̄T | Ā(1), x̄(a),x′(a′),Y ′(h)] ∈ Rn×d.

Invoking Stein’s lemma, we see that the following equation holds:

∂

∂a
E
[
∥Λ1,a,a′,h∥2

]
=

2anεn
d

E
[
∥M1,a,a′,h −Λ1,a,a′,hΘ̄

T
1,a,a′,h∥2F

]
.

Using the above equation, we obtain that∫ 2

1

∫ 2

1

1

2n
√
nd

E
[
∥M1,a,a′,h −Λ1,a,a′,hΘ̄1,a,a′,h∥2F

]
dada′

≤ d1/2

2εnn5/2

∫ 2

1

{
E[∥Λ1,2,a′,h∥2]− E[∥Λ1,1,a′,h∥2]

}
da′

≤d
1/2EΛ0∼µΛ

[Λ2
0]

εnn3/2
. (A.27)

Overlap concentration

The next lemmas show that if we draw two independent samples from the posterior distribution of Θ̄

(Λ) given (Ā(1), x̄(a),x′(a′),Y ′(h)), then their normalized inner product concentrates. This phenomenon
is referred to as overlap concentration in the literature of statistical mechanics. In what follows, we prove
overlap concentration for Θ̄. Since the proof is similar, in order to avoid redundancy, we skip the counterpart
proof for Λ. For the sake of simplicity, we denote by ⟨·⟩s,a,a′,h the expectation with respect to the posterior
distribution P(· | Ā(s),x′(a′), x̄(a),Y ′(h)).

Lemma A.4.14. For θ̄ ∈ Rd, we define

U(θ̄) :=

d∑
j=1

{
1√
εnnd

θ̄jgj +
2a

d
θ̄jΘ̄j −

a

d
θ̄2
j

}
.

Let θ̄(1), θ̄(2), θ̄ ∈ Rd be independent samples drawn from the posterior distribution P(Θ̄ = · | Ā(1), x̄(a),x′(a′),Y ′(h)).
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Then under the conditions of Theorem 2.4.5 (b), for all a, a′ ∈ [0.1, 10] and h ≥ 0, we have

E[⟨((θ̄(1))Tθ̄(2)/d− E[⟨(θ̄(1))Tθ̄(2)/d⟩1,a,a′,h])2⟩1,a,a′,h]
≤40K2

2 log dE[⟨|U(θ̄)− E[⟨U(θ̄)⟩1,a,a′,h]|⟩1,a,a′,h]. (A.28)

Using Eq. (A.28), we see that in order to prove overlap concentration, we only need to show that the
right hand side of Eq. (A.28) is sufficiently small, which is accomplished via the following lemmas:

Lemma A.4.15. We let θ̄ ∈ Rd be a sample drawn from the posterior distribution P(Θ̄ = · | Ā(1), x̄(a),x′(a′),Y ′(h)).
For h ≥ 0, we define

vn(h) := sup
1/2≤a,a′≤3

E[|ϕ̄n(1, a, a′, h)− E[ϕ̄n(1, a, a′, h)]|],

where we recall that ϕ̄n is defined in Eq. (A.24). Then under the conditions of Theorem 2.4.5 (b), if we
further assume that εn → 0+ and nd−1/2εn → ∞ as n, d → ∞, then there exists a numerical constant
C > 0, such that for n, d large enough∫ 2

1

∫ 2

1

E[⟨|U(θ̄)− E[⟨U(θ̄)⟩1,a,a′,h]|⟩1,a,a′,h]dada′ ≤ CK2

√
(vn(h) + n−1)ε−1

n log d.

Lemma A.4.16. Under the conditions of Theorem 2.4.5 (b), if we further assume εn, ε′n → 0+ as n, d→∞,
then there exists a numerical constant C1 > 0 such that for all n, d large enough and 0 ≤ h ≤ 1

vn(h) ≤ C1K
2
1K

2
2d

1/2n−1 log d.

We defer the proofs of Lemmas A.4.14 to A.4.16 to Appendices A.6.6 to A.6.8, respectively. Combining
Lemmas A.4.14 to A.4.16, we deduce that under the conditions of these lemmas, for θ̄(1), θ̄(2) ∈ Rd that are
two independent samples from the posterior distribution P(Θ̄ = · | Ā(1),x′(a′), x̄(a),Y ′(h)), there exists a
numerical constant C > 0, such that for n, d large enough

d

n

∫ 2

1

∫ 2

1

E[⟨(θ̄T
1 θ̄2/d− E[⟨θ̄T

1 θ̄2/d⟩1,a,a′,h])2⟩1,a,a′,h]dada′ ≤ CK1K
4
2ε

−1/2
n (log d)2d5/4n−3/2.

Under condition (b), we see that there exists εn → 0+, such that ε−1/2
n (log d)2d5/4n−3/2 → 0 and nd−1/2εn →

∞ as n, d→∞. We summarize the overlap concentration results in Theorem A.4.1 below, which also contains
concentration argument for Λ (that we skip the proof).

Theorem A.4.1 (Overlap concentration). Let θ̄(1), θ̄(2) ∈ Rd be two independent samples drawn from the
posterior distribution P(Θ̄ = · | Ā(1),x′(a′), x̄(a),Y ′(h)), and λ(1),λ(2) ∈ Rn be two independent samples
drawn from the posterior distribution P(Λ = · | Ā(1),x′(a′), x̄(a),Y ′(h)). Under the conditions of Theorem
2.4.5 (b), there exist εn, ε′n → 0+ such that for all h ∈ [0, 1], as n, d→∞

(log d)2d5/4

n3/2ε
1/2
n

→ 0,
nεn
d1/2

→∞, (log d)1/2d1/4

n1/2ε′n
1/2

→ 0,
nε′n

d1/2 log d
→∞,

d

n

∫ 2

1

∫ 2

1

E[⟨(θ̄T
1 θ̄2/d− E[⟨θ̄T

1 θ̄2/d⟩1,a,a′,h])2⟩1,a,a′,h]dada′ → 0,
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∫ 2

1

∫ 2

1

E[⟨(λT
1λ2/n− E[⟨λT

1λ2/n⟩1,a,a′,h])2⟩1,a,a′,h]dada′ → 0.

Corollary A.4.1. Under the conditions of Theorem A.4.1, for all h ∈ [0, 1], as n, d→∞ we have

d

n

∫ 2

1

∫ 2

1

E[⟨(⟨θ̄T
1 θ̄2/d⟩1,a,a′,h − E[⟨θ̄T

1 θ̄2/d⟩1,a,a′,h])2⟩1,a,a′,h]dada′ → 0,∫ 2

1

∫ 2

1

E[⟨(⟨λT
1λ2/n⟩1,a,a′,h − E[⟨λT

1λ2/n⟩1,a,a′,h])2⟩1,a,a′,h]dada′ → 0.

Remark A.4.2. In Theorem A.4.1 and Corollary A.4.1, we can replace the interval [1, 2] with [a, b] for any
fixed 0 < a < b <∞.

Proof of the theorem

In the rest parts of the proof, we always assume that {εn}n∈N+ and {ε′n}n∈N+ are chosen as in Theorem A.4.1.
Under this assumption we have ε−1

n (log d)4d5/2n−3 → 0 and d−2n3/2(log d)−4 → 0, thus d1/2n−3/2ε−1
n → 0

as n, d→∞. Plugging this result into Eqs. (A.26) and (A.27), we obtain that

lim
n,d→∞

∫ 2

1

∫ 2

1

1

2n
√
nd

E
[
∥Λ1,a,a′,hΘ̄1,a,a′,h −M1,0,0,h∥2F

]
dada′ = 0. (A.29)

By Lemma A.4.12 and Lemma A.4.13 we see that |Φn(s, 0, 0, h)− supq≥0 F(q2Θs2 + h, q)| = on(1) for all
fixed s, h ≥ 0. Notice that s 7→ Φn(s, 0, 0, h) is convex and differentiable. Furthermore, for all but countably
many values of q2Θ+h > 0, the mapping s 7→ supq≥0 F(q2Θs2+h, q) is differentiable at s = 1. Using Gaussian
integration by parts, Lemmas A.2.3 and A.2.4 we conclude that for these q2Θ + h we have

lim
n,d→∞

1

2n
√
nd

E
[
∥E[ΛΘ̄T | Ā(1),Y ′(h)]∥2F

]
=

∂

∂s
sup
q≥0
F(s2q2Θ + h, q)

∣∣∣
s=1

. (A.30)

Define DΘ(h) := ∂
∂s supq≥0 F(s2q2Θ + h, q)

∣∣∣
s=1

. For all but countably many qΘ > 0 the mapping s 7→
supq≥0 F(q2Θs2, q) is differentiable at s = 1, thus DΘ(0) is well-defined. In this case, if DΘ(0) = 0, then by
[125] we have limn→∞ MMSEsymm

n (µΛ, qΘ) = EΛ0∼µΛ [Λ
2
0]

2, which is achieved by 0n×n. Using Theorem 2.4.4
we deduce that limn,d→∞ MMSEasym

n (µΛ, µΘ) = EΛ0∼µΛ [Λ
2
0]

2, which concludes the proof of the theorem.
In the following parts of the proof we will assume DΘ(0) > 0. Let a1 < a2, a′1 < a′2, and a ∼ Unif[a1, a2]

and a′ ∼ Unif[a′1, a
′
2]. Similar to the derivation of Eq. (A.29) we have

lim
n,d→∞

1

2n
√
nd

E
[
∥Λ1,a,a′,hΘ̄1,a,a′,h −M1,0,0,h∥2F

]
= 0, (A.31)

where the expectation is taken over a ∼ Unif[a1, a2] and a′ ∼ Unif[a′1, a
′
2]. By Eq. (A.30), Eq. (A.31) and

triangle inequality, for all but countably many q2Θ, q2Θ + h we have

lim sup
n,d→∞

{
1

2
√
n3d

E
[
∥Λ1,a,a′,hΘ̄1,a,a′,h −M1,0,0,0∥2F

]}1/2

≤ 1

2
√
n3d

(
lim sup
n,d→∞

{
E
[
∥Λ1,a,a′,hΘ̄1,a,a′,h −M1,0,0,h∥2F

]}1/2
+ lim sup

n,d→∞

{
E
[
∥M1,0,0,h −M1,0,0,0∥2F

]}1/2 )
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=(DΘ(h)−DΘ(0))
1/2. (A.32)

The following lemmas establish several useful properties of Λ1,a,a′,h and Θ̄1,a,a′,h.

Lemma A.4.17. Recall that D is defined in Eq. (A.13). For all fixed a∗, a
′
∗ ∈ (0, 5], h ∈ [0, 1], under the

assumptions of Theorem 2.4.5 (b), if we further assume that h+ q2Θ ∈ D, then as n, d→∞ we have

1

n
E
[∥∥E[Λ | Ā(1),x′(a′∗), x̄(a∗),Y

′(h)]
∥∥2] = 2

(
∂

∂h
sup
q≥0
F(q2Θ + h, q)

)1/2

+ on(1),

1√
nd

E
[
∥E[Θ̄ | Ā(1),x′(a′∗), x̄(a∗),Y

′(h)]∥2
]
= 2q2Θ

(
∂

∂h
sup
q≥0
F(q2Θ + h, q)

)1/2

+ on(1).

The proof of Lemma A.4.17 is deferred to Appendices A.6.9 and A.6.10, respectively. By Lemma A.4.17
and Corollary A.4.1, we conclude that for all 0 < a1 < a2 < 5 and 0 < a′1 < a′2 < 5, if we let a ∼ Unif[a1, a2]

and a′ ∼ Unif[a′1, a
′
2], then for all h+ q2Θ ∈ D we have

1√
nd

∥∥E[Θ̄ | Ā(1),x′(a′), x̄(a),Y ′(h)]
∥∥2 = 2q2Θ

(
∂

∂h
sup
q≥0
F(q2Θ + h, q)

)1/2

+ oP (1). (A.33)

Let C0(qΘ, h) := 2q2Θ
(
∂
∂h supq≥0 F(q2Θ + h, q)

)1/2
. We define the mapping M : Rn×n × R+ 7→ Rn×n, such

that M(X; b)ij = Xij1{|Xij | ≤ b}. We further define M0 : Rn×d → Rn×n such that for X ∈ Rn×d

M0(X) = M
(

1√
nd

E[ΛΘ̄T | Ā = X]E[Θ̄Λ̄T | Ā = X]; 2K2
1C0(qΘ, h)

)
.

By triangle inequality

1

n
E
[
∥M0(Ā)− C0(qΘ, h)E[ΛΛT | Ā,Y ′(h)]∥2F

]1/2
≤C0(qΘ, h)

n
E
[
∥Λ1,a,a′,hΛ

T
1,a,a′,h − E[ΛΛT | Ā,Y ′(h)]∥2F

]1/2
+

1

n
E
[
∥C0(qΘ, h)Λ1,a,a′,hΛ

T
1,a,a′,h −M0(Ā)∥2F

]1/2
, (A.34)

where the expectation is taken over (a, a′,Λ, Θ̄,Z, g, g′,W ′). Using Gaussian integration by parts we obtain

∂

∂a′
E
[
∥Λ1,a,a′,h∥2

]
= ε′na

′E
[
∥E[ΛΛT | Ā, x̄(a), x̄′(a′),Y ′(h)]−Λ1,a,a′,hΛ

T
1,a,a′,h∥2F

]
. (A.35)

By Eq. (A.35) we have

1

n2
E
[
∥Λ1,a,a′,hΛ1,a,a′,h − E[ΛΛT | Ā,x′(a′), x̄(a),Y ′(h)]∥2F

]
=

1

n2(a2 − a1)(a′2 − a′1)

∫ a2

a1

∫ a′2

a′1

(ε′na
′)−1 ∂

∂a′
E
[
∥Λ1,a,a′,h∥2

]
da′da

≤ 1

n2ε′na
′
1(a2 − a1)(a′2 − a′1)

∫ a2

a1

E
[
∥Λ1,a,a′2,h

∥2
]
da

≤ K2
1

n(a′2 − a′1)ε′na′1
, (A.36)
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which vanishes as n, d→∞. For X ∈ Rn×n, we define ∥X∥1 :=
∑
i,j∈[n] |Xij |. Then we have

1

n2
E
[
∥C0(qΘ, h)Λ1,a,a′,hΛ

T
1,a,a′,h −M0(Ā)∥2F

]
(i)

≤ 3K2
1C0(qΘ, h)

n2
E
[
∥C0(qΘ, h)Λ1,a,a′,hΛ

T
1,a,a′,h −M0(Ā)∥1

]
(ii)

≤ 3K2
1C0(qΘ, h)

n2
E
[∥∥∥C0(qΘ, h)Λ1,a,a′,hΛ

T
1,a,a′,h −

1√
nd

M1,0,0,0M
T
1,0,0,0

∥∥∥
1

]
(iii)

≤ 3K2
1C0(qΘ, h)

n2
E
[∥∥∥∥Θ̄1,a,a′,h∥2√

nd
Λ1,a,a′,hΛ

T
1,a,a′,h −

1√
nd

M1,0,0,0M
T
1,0,0,0

∥∥∥
1

]
(A.37)

+ 3K4
1C0(qΘ, h)E

[∣∣∣∣∥Θ̄1,a,a′,h∥2√
nd

− C0(qΘ, h)

∣∣∣∣] , (A.38)

where in (i) we use the assumption that µΛ has bounded support, and (ii) is by the fact that for all
|x| ≤ C0(qΘ, h)K

2
1 , y ∈ R,

∣∣x− y1{|y| ≤ 2K2
1C0(qΘ,h)}

∣∣ ≤ ∣∣x− y∣∣.
Lastly, (iii) is by triangle inequality. Applying Lemma A.2.6 and Hölder’s inequality we see that

3K2
1C0(qΘ, h)

n2
× E

[∥∥∥∥Θ̄1,a,a′,h∥2√
nd

Λ1,a,a′,hΛ
T
1,a,a′,h −

1√
nd

M1,0,0,0M
T
1,0,0,0

∥∥∥
1

]
≤6K2

1C0(qΘ, h)

n
√
nd

× E
[∥∥M1,0,0,0 −Λ1,a,a′,hΘ̄

T
1,a,a′,h

∥∥2
F

]1/2
×
(
E
[∥∥M1,0,0,0

∥∥2
F

]1/2
+ E

[∥∥Λ1,a,a′,hΘ̄
T
1,a,a′,h

∥∥2
F

]1/2 )
. (A.39)

By Lemma A.4.13, for all a, a′ ∈ [0, 5], as n, d→∞ we have Φ̄n(1, a, a′, h)→ supq≥0 F(q2Θ+h, q). Notice that
the mapping h 7→ Φ̄n(1, a, a

′, h) is convex and differentiable, thus for q2Θ+h ∈ D we can apply Lemma A.2.4
and conclude that

lim
n,d→∞

1

4n2
E[∥E[ΛΛT | Ā,x′(a′), x̄(a),Y ′(h)]∥2F ] =

∂

∂h
sup
q≥0
F(q2Θ + h, q). (A.40)

Leveraging triangle inequality, Eqs. (A.30) and (A.32), we obtain that for all a, a′ ∈ [0, 5], q2Θ + h, q2Θ ∈ D

lim sup
n,d→∞

1

n
√
nd

E
[∥∥M1,0,0,0

∥∥2
F

]
= 2DΘ(0),

lim sup
n,d→∞

1

n
√
nd

E
[∥∥Λ1,a,a′,hΘ̄

T
1,a,a′,h

∥∥2
F

]
= 2DΘ(h),

lim
n,d→∞

1

n
√
nd

E
[∥∥M1,0,0,0 −Λ1,a,a′,hΘ̄1,a,a′,h

∥∥2
F

]
= 2(DΘ(h)−DΘ(0)).

(A.41)

By Theorem A.4.1 and Eq. (A.33) we have

lim sup
n,d→∞

E
[∣∣∣∣ 1√

nd
∥Θ̄1,a,a′,h∥2 − C0(qΘ, h)

∣∣∣∣] = 0. (A.42)
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We plug Eqs. (A.39), (A.41) and (A.42) into Eq. (A.37) and obtain that

lim sup
n,d→∞

1

n2
E
[
∥C0(qΘ, h)Λ1,a,a′,hΛ

T
1,a,a′,h −M0(Ā)∥2F

]
≤24K2

1C0(qΘ, h)×
(
DΘ(h)−DΘ(0)

)1/2
. (A.43)

Using triangle inequality

1

n
E
[
∥ΛΛT − C0(qΘ, h)

−1M0(Ā)∥2F
]1/2

≤ 1

n
E
[
∥ΛΛT − E[ΛΛT | Ā,x′(a′), x̄(a),Y ′(h)]∥2F

]1/2
+

1

n
E
[
∥Λ1,a,a′,hΛ

T
1,a,a′,h − C0(qΘ, h)

−1M0(Ā)∥2F
]1/2

+
1

n
E
[
∥E[ΛΛT | Ā,x′(a′), x̄(a),Y ′(h)]−Λ1,a,a′,hΛ

T
1,a,a′,h∥2F

]1/2
.

We plug Eqs. (A.36), (A.40) and (A.43) into the above equation and conclude that

lim sup
n,d→∞

1

n2
E
[
∥ΛΛT − C0(qΘ, h)

−1M̂(Ā)∥2F
]

≤EΛ0∼µΛ [Λ
2
0]

2 − 4
∂

∂h
sup
q≥0
F(q2Θ + h, q) + 2K2

1

√
24K2

1C0(qΘ, h)−1(DΘ(h)−DΘ(0))1/2

+ 24K2
1C0(qΘ, h)

−1(DΘ(h)−DΘ(0))
1/2,

which is an upper bound for lim supn,d→∞ E
[∥∥∥ΛΛT − E[ΛΛT | Ā]

∥∥∥2
F

]
/n2. Recall that DΘ(0) > 0, thus

C0(qΘ, h)
−1 < C0(qΘ, 0)

−1 <∞. For all but countably many qΘ > 0 the mapping h 7→ DΘ(h) is continuous
at 0. For these qΘ, if we take h→ 0+ while maintaining h+ q2Θ ∈ D then we derive that

lim sup
n,d→∞

1

n2
E
[∥∥∥ΛΛT − E[ΛΛT | Ā]

∥∥∥2
F

]
≤ EΛ0∼µΛ

[Λ2
0]

2 − 4
∂

∂h
sup
q≥0
F(q2Θ + h, q)

∣∣∣
h=0

,

thus concludes the proof of the theorem using Lemma A.4.11.

Proof of Theorem 2.4.5 under condition (c)

We define Ỹ = (AAT − dIn)/
√
nd and Ỹ ′ = qΘΛΛT/n + (ZTZ − dIn)/

√
nd. One can verify that as

n, d→∞ we have ∥Ỹ − Ỹ ′∥op = oP (1). We then run rotationally invariant AMP with spectral initialization
based on Ỹ . According to [148], for large enough number of iterations this algorithm achieves Bayesian
MMSE, thus completing the proof of the theorem under condition (c).

A.5 Convergence of free energy density

A.5.1 Proof of Lemma A.4.2

For k ∈ [d], we define

H(k)
n (λ,θ) :=

1√
nd

n∑
i=1

d∑
j=1,j ̸=k

ΛiλiΘjθj +
1

4
√
nd

n∑
i=1

d∑
j=1,j ̸=k

Zijλiθj −
1

2
√
nd

n∑
i=1

d∑
j=1,j ̸=k

λ2
iθ

2
j
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+Hn(λ;Y
′(h)) +Hn(λ;x

′(s)).

Furthermore, we introduce the following distributions

µ(k,+)
n (dλ,dθ) :=

1

Z
(k,+)
n

exp
(
H(k)
n (λ,θ)

)
µ⊗n
Λ (dλ)PΘ,k(dθ),

Z(k,+)
n :=

∫
exp

(
H(k)
n (λ,θ)

)
µ⊗n
Λ (dλ)PΘ,k(dθ),

µ(k,−)
n (dλ,dθ) :=

1

Z
(k,−)
n

exp
(
H(k)
n (λ,θ)

)
µ⊗n
Λ (dλ)PΘ,k−1(dθ),

Z(k,−)
n :=

∫
exp

(
H(k)
n (λ,θ)

)
µ⊗n
Λ (dλ)PΘ,k−1(dθ).

Note that µ(k,+)
n , µ(k,−)

n , Z(k,+)
n and Z(k,−)

n are all random objects. The following lemma is a straightforward
consequence of the above definitions.

Lemma A.5.1. The following statements are true for all k ∈ [d]:

1. Z(k,+)
n = Z

(k,−)
n .

2. We denote by Z·k ∈ Rn the k-th column of Z, then (µ
(k,+)
n , µ

(k,−)
n , Z

(k,+)
n , Z

(k,−)
n ) are independent of

(Z·k,Θk).

3. We let θ−k = (θ1,θ2, · · · ,θk−1,θk+1, · · · ,θd) ∈ Rd−1. For (λ,θ) ∼ µ
(k,+)
n , we have θk ∼ µΘ and is

independent of (θ−k,λ). Similarly, for (λ,θ) ∼ µ
(k,−)
n , we have θk ∼ N(0, qΘ), and is independent of

(θ−k,λ).

We define

h(k)n (λ,θ) :=
1√
nd

n∑
i=1

ΛiλiΘkθk +
1

4
√
nd

n∑
i=1

Zikλiθk −
1

2
√
nd

n∑
i=1

λ2
iθ

2
k.

For some random variable X, we denote by µ
(k,+)
n [X], µ(k,−)

n [X] the expectations of X evaluated under
distributions µ(k,+)

n and µ(k,−)
n , respectively. Using Lemma A.5.1, we obtain that

Φ(k)
n − Φ(k−1)

n

=
1

n
E
[
log

(∫
exp(h(k)n (λ,θ))µ(k,+)

n (dλ,dθ)Z(k,+)
n

)]
− 1

n
E
[
log

(∫
exp(h(k)n (λ,θ))µ(k,−)

n (dλ,dθ)Z(k,−)
n

)]
(i)
=

1

n
E
[
log
(
µ(k,+)
n

[
exp(h(k)n (λ,θ))

])]
− 1

n
E
[
log
(
µ(k,−)
n

[
exp(h(k)n (λ,θ))

])]
, (A.44)

where (i) is by result 1 in Lemma A.5.1. We consider the following Taylor expansion:

exp
(
h(k)n (λ,θ)

)
=

∞∑
l=0

1

l!
h(k)n (λ,θ)l = 1 +

4∑
l=1

c
(k)
l θlk +R(k) +

∞∑
l=5

1

l!
h(k)n (λ,θ)l, (A.45)

where

c
(k)
1 =

1√
nd
⟨Λ,λ⟩Θk +

1
4
√
nd
⟨Z·k,λ⟩,



APPENDIX A. LOW-RANK MATRIX ESTIMATION WITH DIVERGING ASPECT RATIOS 106

c
(k)
2 =

1

2

(
1√
nd
⟨Λ,λ⟩Θk +

1
4
√
nd
⟨Z·k,λ⟩

)2

− 1

2
√
nd
⟨λ,λ⟩,

c
(k)
3 =− 1

2nd
⟨Λ,λ⟩⟨λ,λ⟩Θk −

1

2n3/4d3/4
⟨Z·k,λ⟩⟨λ,λ⟩+

1

6

(
1√
nd
⟨Λ,λ⟩Θk +

1
4
√
nd
⟨Z·k,λ⟩

)3

,

c
(k)
4 =

1

8nd
⟨λ,λ⟩2 − 1

4
√
nd
⟨λ,λ⟩

(
1√
nd
⟨Λ,λ⟩Θk +

1
4
√
nd
⟨Z·k,λ⟩

)2

+
1

24

(
1√
nd
⟨Λ,λ⟩Θk +

1
4
√
nd
⟨Z·k,λ⟩

)4

,

R(k) =− ⟨λ,λ⟩3
48(nd)3/2

θ6
k +

1

8nd
⟨λ,λ⟩2

(
1√
nd
⟨Λ,λ⟩Θk +

1
4
√
nd
⟨Z·k,λ⟩

)
θ5
k +

1

384n2d2
⟨λ,λ⟩4θ8

k

− 1

12
√
nd
⟨λ,λ⟩

(
1√
nd
⟨Λ,λ⟩Θk +

1
4
√
nd
⟨Z·k,λ⟩

)3

θ5
k

+
1

16nd
⟨λ,λ⟩2

(
1√
nd
⟨Λ,λ⟩Θk +

1
4
√
nd
⟨Z·k,λ⟩

)2

θ6
k

− 1

48(nd)3/2
⟨λ,λ⟩3

(
1√
nd
⟨Λ,λ⟩Θk +

1
4
√
nd
⟨Z·k,λ⟩

)
θ7
k.

The next lemma characterizes convergence of power series:

Lemma A.5.2. For n, d large enough, the following quantities almost surely exist and are finite:

∞∑
l=5

1

l!
µ(k,+)
n

[
|h(k)n (λ,θ)|l

]
,

∞∑
l=5

1

l!
µ(k,−)
n

[
|h(k)n (λ,θ)|l

]
.

Proof. We will only prove the lemma for µ(k,−)
n . Proof for µ(k,+)

n is analogous and we skip it for simplicity.
By the power mean inequality we have

∞∑
l=5

1

l!
|h(k)n (λ,θ)|l

≤
∞∑
l=5

3l

l!

{∣∣∣ 1√
nd
⟨Λ,λ⟩Θkθk

∣∣∣l + ∣∣∣ 1
4
√
nd
⟨Z·k,λ⟩θk

∣∣∣l + ∣∣∣ 1

2
√
nd
⟨λ,λ⟩θ2

k

∣∣∣l} .
Next, we take the expectation of the last line above with respect to µ(k,−)

n , which gives

∞∑
l=5

1

l!
µ(k,−)
n

[
|h(k)n (λ,θ)|l

]
(i)

≤
∞∑
l=5

{
3lnl/2K2l|Θk|ll!!ql/2Θ

l!dl/2
+

3ln3l/4∥Z·k∥l∞Kll!!q
l/2
Θ

l!dl/4
+

3lnl/2K2l(2l)!!qlΘ
l!dl/2

}
(ii)
< ∞,

where (i) is by Assumption A.4.1 and the third result of Lemma A.5.1. In order to prove (ii), we only need
to use the following fact: For n, d large enough we have

6qΘK
2n1/2

d1/2
< 1.
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According to Lemma A.5.2, we can take the expectation of Eq. (A.45) with respect to µ(k,+)
n , which gives

µ(k,+)
n

[
exp

(
h(k)n (λ,θ)

)]
=1 + µ(k,+)

n [c
(k)
2 ]qΘ + µ(k,+)

n [c
(k)
4 ]E[Θ4

0] + µ(k,+)
n [R(k)] + µ(k,+)

n

[ ∞∑
l=5

1

l!
h(k)n (λ,θ)l

]
. (A.46)

In the above derivation, we use the fact that under µ(k,+)
n , we have θk

d
= µΘ, which has zero first and third

moments. Using Assumption A.4.1, we conclude that c(k)2 ≥ − 1
2

√
n
dK

2. Furthermore, notice that

3

8nd
⟨λ,λ⟩2 − 1

4
√
nd
⟨λ,λ⟩

(
1√
nd
⟨Λ,λ⟩Θk +

1
4
√
nd
⟨Z·k,λ⟩

)2

+
1

24

(
1√
nd
⟨Λ,λ⟩Θk +

1
4
√
nd
⟨Zk·,λ⟩

)4

is non-negative, thus we have c(k)4 ≥ − 1
4nd ⟨λ,λ⟩2 ≥ − n

4dK
4. Since θk has zero expectation under µ(k,+)

n , we
then conclude that µ(k,+)

n [h
(k)
n (λ,θ)] = − 1

2
√
nd
µ
(k,+)
n [⟨λ,λ⟩θ2

k] ≥ − 1
2

√
n
dK

2qΘ. By Jensen’s inequality

µ(k,+)
n

[
exp

(
h(k)n (λ,θ)

)]
≥ exp

(
µ(k,+)
n

[
h(k)n (λ,θ)

])
≥ exp

(
−1

2

√
n

d
K2qΘ

)
.

Note that the function x 7→ log(x) is concave. We next plug the lower bounds derived above into Eq. (A.46),
and obtain ∣∣∣log (µ(k,+)

n

[
exp

(
h(k)n (λ,θ)

)])
− log

(
1 + µ(k,+)

n [c
(k)
2 ]qΘ + µ(k,+)

n [c
(k)
4 ]E[Θ4

0]
)∣∣∣

≤
∣∣∣∣∣
∞∑
l=5

µ(k,+)
n

[ 1
l!
h(k)n (λ,θ)l

]
+ µ(k,+)

n [R(k)]

∣∣∣∣∣×
max

{
µ(k,+)
n

[
exp

(
h(k)n (λ,θ)

)]−1

,
(
1 + µ(k,+)

n [c
(k)
2 ]qΘ + µ(k,+)

n [c
(k)
4 ]E[Θ4

0]
)−1

}
≤
∣∣∣∣∣
∞∑
l=5

µ(k,+)
n

[ 1
l!
h(k)n (λ,θ)l

]
+ µ(k,+)

n [R(k)]

∣∣∣∣∣︸ ︷︷ ︸
I

×

max

{
exp

(
1

2

√
n

d
K2qΘ

)
,

(
1− 1

2

√
n

d
K2qΘ −

n

4d
K4E[Θ4

0]

)−1
}

︸ ︷︷ ︸
II

. (A.47)

Since d ≫ n and (K, qΘ,E[Θ4
0]) are independent of (n, d), we obtain that term II above converges to 1 as

n, d→∞. Next, we will provide an upper bound for term I. To this end, we upper bound E[|µ(k,+)
n [

∑∞
l=5

1
l!h

(k)
n (λ,θ)l]|]

and E[|µ(k,+)
n [R(k)]|] in Appendix A.5.1 and Appendix A.5.1, respectively, and combine them to finish the

proof in Appendix A.5.1.
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Upper bounding E[|µ(k,+)
n [

∑∞
l=5

1
l!h

(k)
n (λ,θ)l]|]

Since µΘ is sub-Gaussian, there exists a constant C > 0 depending only on µΘ, such that for all p ∈ N+,
EΘ0∼µΘ [|Θ0|p] ≤ Cppp/2 and EG∼N(0,1)[|G|p] ≤ Cppp/2. Then for n, d large enough, we have

E

[∣∣∣∣∣
∞∑
l=5

1

l!
µ(k,+)
n

[
h(k)n (λ,θ)l

]∣∣∣∣∣
]

(i)

≤
∞∑
l=5

1

l!
E

[
µ(k,+)
n

[∣∣∣∣ 1√
nd
⟨Λ,λ⟩Θkθk +

1
4
√
nd
⟨Z·k,λ⟩θk −

1

2
√
nd
⟨λ,λ⟩θ2

k

∣∣∣∣l
]]

(ii)

≤
∞∑
l=5

1

l!
E

[
µ(k,+)
n

[∣∣∣∣ 1√
nd
⟨Λ,λ⟩Θkθk +

1
4
√
nd
⟨Z·k,λ⟩θk −

1

2
√
nd
⟨λ,λ⟩θ2

k

∣∣∣∣2l
]]1/2

(iii)

≤
∞∑
l=5

3l

l!
×

E

[
µ(k,+)
n

[∣∣∣∣ 1√
nd
⟨Λ,λ⟩Θkθk

∣∣∣∣2l
]]1/2

+ E

[
µ(k,+)
n

[∣∣∣∣ 1
4
√
nd
⟨Z·k,λ⟩θk

∣∣∣∣2l
]]1/2

+

E

[
µ(k,+)
n

[∣∣∣∣ 1

2
√
nd
⟨λ,λ⟩θ2

k

∣∣∣∣2l
]]1/2

(iv)

≤
∞∑
l=5

3l

l!
×
{
K2lC2lnl/2

dl/2
× (2l)l +

KlC2lnl/4

dl/4
× (2l)l +

K2lC2lnl/2

dl/2
× (2l)l

}
(v)

≤FK,C ×
n5/4

d5/4
, (A.48)

where FK,C > 0 is a constant that depends only on K and C. In the above inequalities, (i) is by triangle
inequality, (ii) is by Hölder’s inequality and (iii) is by power mean inequality. Argument (iv) is via a
combination of the following facts: (1) Support(Λ) ⊆ [−K,K], (2) µΘ is sub-Gaussian, (3) the random
distribution µ(k,+)

n is independent of (Z·k,Θk).
For illustration, in the following parts of the proof we upper bound the second summand in the second

to last line of Eq. (A.48). The proofs for the first and third summands follow analogously.
By Lemma A.5.1, we see that µ(k,+)

n is independent of Z·k, and θk is independent of λ under µ(k,+)
n .

Therefore, we have

E

[
µ(k,+)
n

[∣∣∣∣ 1
4
√
nd
⟨Z·k,λ⟩θk

∣∣∣∣2l
]]

=

n∑
s1=1

· · ·
n∑

s2l=1

E [Zs1kZs2k · · ·Zs2lk]Cs1,s2,··· ,s2l , (A.49)

where Cs1,s2,··· ,s2l = n−l/2d−l/2E[µ(k,+)
n [λs1λs2 · · ·λs2l ]]E[Θ2l

0 ]. By sub-Gaussian property we have

|Cs1,s2,··· ,s2l | ≤ K2lC2l(2l)ln−l/2d−l/2.

Consider all terms that take the form of E [Zs1kZs2k · · ·Zs2lk]. If such term is non-zero, then it must be
positive. Using property of Gaussian distribution, we have

n∑
s1=1

· · ·
n∑

s2l=1

E [Zs1kZs2k · · ·Zs2lk] = E[(Z1k + · · ·+ Znk)
2l] = nl(2l − 1)!! ≤ nlC2l(2l)l.



APPENDIX A. LOW-RANK MATRIX ESTIMATION WITH DIVERGING ASPECT RATIOS 109

Therefore, the right hand side of Eq. (A.49) has value no larger than

nlC2l(2l)l ×K2lC2l(2l)ln−l/2d−l/2 = K2lC4l(2l)2lnl/2d−l/2,

which leads to the desired upper bound for the second summand. Finally, we use Stirling formula and the
assumption that d≫ n to prove argument (v).

Upper bounding E[|µ(k,+)
n [R(k)]|]

Similar to the proof in Appendix A.5.1, we conclude that for n, d large enough

E[|µ(k,+)
n [R(k)]|] ≤ F ′

K,C ×
n5/4

d5/4
, (A.50)

where F ′
K,C > 0 is a constant depending only on K and C. The derivation of the above upper bound is

similar to the derivation of the upper bound for E[|µ(k,+)
n [

∑∞
l=5

1
l!h

(k)
n (λ,θ)l]|] given in Eq. (A.48), and we

skip the details here for the sake of simplicity.

Combining the upper bounds

Combining Eqs. (A.47), (A.48) and (A.50), we obtain that for n, d large enough∣∣∣∣∣
d∑
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1

n
E
[
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(
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[
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. (A.51)

In what follows, we show that the following quantity is small:∣∣∣∣∣
d∑
k=1

1

n
E
[
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)]∣∣∣∣∣ . (A.52)

Again we use the concavity of the mapping x 7→ log(x), which gives
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By Lemma A.5.1, µ(k,+)
n and Z·k are independent of each other, thus

E
[
µ(k,+)
n

[
1

8nd
⟨λ,λ⟩2 − 1

4nd
⟨λ,λ⟩⟨Z·k,λ⟩2 +

1

24nd
⟨Z·k,λ⟩4

]]
= 0. (A.54)
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Next, we plug Eq. (C.9) into the definition of c(k)4 , then apply Lemma A.5.1 claim 3, which gives∣∣∣E[µ(k,+)
n [c
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0]. (A.55)

In addition, we have the following lemma:

Lemma A.5.3. There exist constants A1(K,µΘ), A2(K,µΘ) > 0, which are functions of (K,µΘ) only, such
that

E[µ(k,+)
n [|c(k)2 |2]] ≤ A1(K,µΘ)×

n

d
, E[µ(k,+)

n [|c(k)4 |2]] ≤ A2(K,µΘ)×
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.

Proof. Straightforward computation reveals that there exist A′
1(K,µΘ), A

′
2(K,µΘ) > 0 depending only on

(K,µΘ), such that
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The rest of the proof follows from Lemma A.5.1 and the assumption that d≫ n.

Recall that c(k)2 ≥ − 1
2

√
n
dK

2 and c(k)4 ≥ − n
4dK

4. Then for n, d large enough, using Lemma A.5.3, we obtain
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, (A.56)
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Next, we plug Eqs. (A.55) to (A.57) into Eq. (A.53), then sum over k ∈ [d]. This implies the existence of
C(K,µΘ) > 0, which is a constant depending only on (K,µΘ), such that for n, d large enough
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(A.58)

Combining Eqs. (A.51) and (A.58), we derive that
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Similarly, we can prove that
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Since c(k)2 is independent of θk, by Lemma A.5.1 we have µ(k,+)
n [c

(k)
2 ] = µ

(k,−)
n [c

(k)
2 ]. Finally, we combine

Eqs. (A.44), (A.60) and (C.14), which gives Φ
(d)
n − Φ

(0)
n = on(1). Thus, we have completed the proof of

Lemma A.4.2.

A.5.2 Proof of Lemma A.4.3

In this section we prove Lemma A.4.3. Applying Gaussian integration by parts, we obtain that
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Furthermore, notice that the following inequalities hold:
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where in Eq. (A.64), we use the fact that for all x ∈ [0,∞), there exists y ∈ [0, x] such that

log(1 + x) = x− x2

2
+

x3
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.

Next, we combine Eqs. (A.61) to (A.65), and conclude that∣∣∣Φ(0)
n (h, s)− Φ̃n(h, s)

∣∣∣
≤ 1

n
E

[
nK4qΘ

∣∣∥Θ∥2 − dqΘ∣∣
2d

+
q3Θn

3/2K6

2d1/2
+
n3/4qΘK

3∥ZΘ∥
d3/4

+
n3/2K6q3Θ∥ZZT∥op

2d3/2
(A.66)
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Using Lemma A.2.1, we see that
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Finally, we combine Eq. (A.66), (A.67), the assumption that d ≫ n, and conclude that as n, d → ∞,
|Φ(0)
n (h, s)− Φ̃n(h, s)| = on(1), thus completing the proof of Lemma A.4.3.

A.5.3 Proof of Lemma A.4.4

Recall that W
d
= GOE(n). Then for all fixed orthogonal matrix O ∈ Rn×n, OTWO

d
= W and OT(ZZT −

dIn)O
d
= (ZZT − dIn). By orthogonal invariance, we can couple

(
ZZT − dIn

)
/
√
nd with W such that

they admit the following eigen-decomposition:

1√
nd

(
ZZT − dIn

)
= ΩTS1Ω, W = ΩTS2Ω. (A.68)

In the above display, Ω is Haar-distributed on the orthogonal matrix group O(n), S1 and S2 are diagonal
matrices containing ascendingly ordered eigenvalues of matrices

(
ZZT − dIn

)
/
√
nd and W , respectively.
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Furthermore, S1,S2 are both independent of Ω. Direct computation implies the following inequality:

∣∣∣Φ̃n(h, s)− ΦYn (h, s)
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2
E [∥S1 − S2∥op] .

Let σi(Sj) be the i-th largest eigenvalue of Sj for j ∈ [2], then ∥S1 − S2∥op = maxi∈[n] |σi(S1) − σi(S2)|.
We denote by ESD(M) the empirical spectral distribution of matrix M . Then using random matrix theory,
ESD(S1) and ESD(S2) both converge almost surely to the semicircle law (see [13]). Furthermore, according
to the results in [11, 167, 115], asymptotically speaking, we have σ1(S1), σ1(S2)

a.s.→ 2 and σn(S1), σn(S2)
a.s.→

−2. Therefore, we see that ∥S1 − S2∥op a.s.→ 0 as n, d→∞.
By Theorem 1.1 in [17], for all 0 < ε ≤ 1/2

E[∥W ∥op] ≤ (1 + ε)

{
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6√
log(1 + ε)

√
2 log n

n

}
.

In the above equation, we first let n → ∞ then let ε → 0+, which gives lim supn→∞ E[∥S2∥op] ≤ 2. By
Fatou’s lemma, we further have lim infn→∞ E[∥S2∥op] ≥ 2, thus limn→∞ E[∥S2∥op] = 2. By Lemma A.2.1,
for any ε > 0, there exists M > 0, such that for n, d large enough

E
[
∥S1∥op 1 {∥S1∥op ≥M}

]
< ε.

Dominated convergence theorem gives lim supn→∞ E[∥S1∥op1{∥S1∥op < M}] ≤ 2, thus we have lim supn→∞ E[∥S1∥op] ≤
2+ε. On the other hand, Fatou’s lemma implies lim infn→∞ E[∥S1∥op] ≥ 2, thus limn→∞ E[∥S1∥op] = 2. Fi-
nally, notice that ∥S1∥op+∥S2∥op−∥S1−S2∥op ≥ 0. We then apply Scheffé’s lemma to both ∥S1−S2∥op and
∥S1∥op+∥S2∥op−∥S1−S2∥op, which gives E[∥S1−S2∥op]→ 0. This concludes the proof of Lemma A.4.4.

A.5.4 Proof of Lemma A.4.5

The first claim is a direct consequence of Lemmas A.4.2 to A.4.4. As for the second claim, it is straightforward
that the free energy densities Φn(h, s) and ΦYn (h, s) are well-defined on [0,∞)× [0,∞) and differentiable for
all h, s ∈ (0,∞).

By Nishimori identity (Lemma A.2.3) and Gaussian integration by parts, we see that for h, s > 0,

∂

∂h
Φn(h, s) =
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4n2
E
[
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E
[
⟨Λ,E[Λ | A,Y ′(h),x′(s)]⟩

]
.

Recall that h, s stand for the signal-to-noise ratios in the perturbed model. Therefore, we obtain that for
fixed s ≥ 0, ∂

∂hΦn(h, s) is increasing in h and for fixed h ≥ 0, ∂
∂sΦn(h, s) is increasing in s.

As a result, for all fixed h, s ≥ 0, the mappings x 7→ Φn(h, x), x 7→ Φn(x, s) are convex on (0,∞). Since
these mappings are obviously continuous, we obtain that they are convex functions on [0,∞). Similarly,
we can show that for all fixed h, s ≥ 0, x 7→ ΦYn (h, x), x 7→ ΦYn (x, s) are convex functions on [0,∞). This
concludes the proof of the second claim.
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Finally, we prove the third claim. This proof is based on Guerra’s interpolation technique. For t ∈
[0, 1], x, q ∈ R+, we define
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.

By [125, Theorem 13], we see that limn→∞ ΨGn (1, x, q) = supy≥0 F(x, y). Using Lemma A.2.3 and Gaussian
integration by parts, we see that
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Direct computation reveals that

ΨGn (0, x, q) = F(x, q) +
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.

Therefore, for all x, q ≥ 0,

ΨGn (1, x, q) = ΨGn (0, x, q) +
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ΨGn (t, x, q)dt ≥ F(x, q). (A.69)

According to [125, Proposition 17], for all but countably many x > 0, F(x, ·) has a unique maximizer q∗(x).
For these x, we plug q = q∗(x) into Eq. (A.69), which implies for all but countably many x > 0 and all
t ∈ [0, 1], limn→∞ ΨGn (t, x, q

∗(x)) = F(x, q∗(x)) + xq∗(x)2(1− t)/4. Notice that ΨGn (t, x, q
∗(x)) = ΦYn (0, s) if

xt = q2Θ and (1− t)xq∗(x) = s. This concludes the proof of the third claim of the lemma.

A.5.5 Proof of Lemma A.4.6

For t ∈ [0, 1], we define the interpolated Hamiltonian as
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where Z ′ = (Z ′
ij)i∈[n],j∈[d] is an independent copy of Z and is independent of everything else. We empha-

size that Z,Z ′,W ,W ′,Λ,Θ are mutually independent. Notice that Hε
n,t(λ,θ;h) is the Hamiltonian that

corresponds to observations (A1,A2,Y 1,Y 2)

A1 =

√
t

4
√
nd

ΛΘT +Z, A2 =

√
1− t
4
√
nd

Λ̄ΘT +Z ′,

Y 1 =

√
ht

n
ΛΛT +W , Y 2 =

√
h(1− t)
n

Λ̄Λ̄T +W ′.

We define the corresponding free energy density

Φεn,t(h) :=
1

n
E
[
log

(∫
exp

(
Hε
n,t(λ,θ;h)

)
µ⊗n
Λ (dλ)µ⊗d

Θ (dθ)

)]
.

At the endpoints, we have Φεn,0(h) = Φ̄εn(h) and Φεn,1(h) = Φn(h, 0). For simplicity, we denote by ⟨·⟩h,ε,t
the expectation with respect to the posterior distribution P(Λ = ·,Θ = · | A1,A2,Y 1,Y 2). Using Gaussian
integration by parts and Nishimori identity (Lemma A.2.3), we have

∂

∂t
Φεn,t(h) =

1

2n
√
nd

∑
i∈[n],j∈[d]

E
[
⟨(Λiλi − Λ̄iλ̄i)Θjθj⟩h,ε,t

]
+

h

4n2
E[⟨(ΛTλ)2⟩h,ε,t]−

h

4n2
E[⟨(Λ̄Tλ̄)2⟩h,ε,t]

=
1

2
√
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E
[〈
(Λ1λ1 − Λ̄1λ̄1)⟨Θ,θ⟩

〉
h,ε,t

]
+

h

4n2

∑
i∈[n],j∈[n]

E
[
⟨ΛiΛjλiλj − Λ̄iΛ̄jλ̄iλ̄j⟩h,ε,t

]
.

Next, we provide upper bound for the above partial derivative. Invoking Holder’s inequality, we see that∣∣∣ ∂
∂t

Φεn,t(h)
∣∣∣

≤ 1

2
√
nd

E
[〈
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2
〉1/2
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〈
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〉1/2
h,ε,t

]
+

h
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∑
i∈[n],j∈[n]

E[(ΛiΛj − Λ̄iΛ̄j)
2]1/2E[Λ2

iΛ
2
j ]

1/2

≤ 1

2
√
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E
[〈
(Λ1λ1 − Λ̄1λ̄1)

2
〉
h,ε,t

]1/2
E
[〈
⟨Θ,θ⟩2

〉
h,ε,t

]1/2
+ hE[Λ4

1]
3/4E[(Λ1 − Λ̄1)

4]1/4.

We denote by ⟨·⟩h,ε,t,∗ the expectation with respect to the posterior distribution

P(Θ = · | A1,A2,Y 1,Y 2,Λ, Λ̄).

Direct computation gives the following inequality:

E
[〈
⟨Θ,θ⟩2

〉
h,ε,t,∗

]
=dE

[〈
Θ2

1θ
2
1

〉
h,ε,t,∗

]
+ d(d− 1)E

[
⟨Θ1Θ2θ1θ2⟩h,ε,t,∗

]
≤dE[Θ4

1] + d(d− 1)E
[
⟨Θ1Θ2θ1θ2⟩h,ε,t,∗

]
. (A.70)

Recall that rn = d1/4n−1/4. We define the mapping

FΘ(δ) := r2nE[E[Θ0 | r−1
n δΘ0 +G]2],



APPENDIX A. LOW-RANK MATRIX ESTIMATION WITH DIVERGING ASPECT RATIOS 116

where Θ0 ∼ µΘ, G ∼ N(0, 1) and Θ0 ⊥ G. Notice that

E
[
⟨Θ1Θ2θ1θ2⟩h,ε,t,∗

]
≤ n

d
E
[
FΘ

(√
(t∥Λ∥22 + (1− t)∥Λ̄∥22)/n

)2]
. (A.71)

Direct computation gives

d

dδ
E [Θ0 | δΘ0 +G]

=(2δΘ0 +G)Var[Θ0 | δΘ0 +G]− δE[Θ3
0 | δΘ0 +G] + δE[Θ2

0 | δΘ0 +G]E[Θ0 | δΘ0 +G], (A.72)

Next, we apply triangle inequality to upper bound the right hand side of Eq. (A.72), which gives∣∣∣∣ ddδE [Θ0 | r−1
n δΘ0 +G

]∣∣∣∣
≤r−1

n ×
{
(2r−1

n δ|Θ0|+ |G|)Var
[
Θ0 | r−1
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]

+r−1
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n δΘ0 +G] + r−1
n δE[Θ2

0 | r−1
n δΘ0 +G]E[|Θ0| | r−1

n δΘ0 +G]
}
.

Leveraging the above formulas and Hölder’s inequality, we obtain that for n, d large enough

FΘ(δ) =

√
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n
E
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]

≤
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]

≤CµΘ
(δ4 + 1). (A.73)

In the above display, CµΘ > 0 is a constant that depends only on µΘ.
We define the set S =

{
∥Λ∥22 ≤ nE[Λ2

0] + n∥Λ2
0∥Ψ1

}
, where ∥ · ∥Ψ1

is the sub-exponential norm of Λ2
0.

Then by Bernstein’s inequality [192, Theorem 2.8.1], we can conclude that there exists a constant CµΛ
> 0

depending only on µΛ, such that for all s ≥ 1,

P
(
∥Λ∥22 ≥ nE[Λ2

0] + sn∥Λ2
0∥Ψ1

)
≤ 2 exp (−CµΛ

ns) .

Therefore, for n, d large enough we have
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]
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(i)

≤ 4C2
µΘ
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d
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n
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+ (A.74)
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0∥Ψ1

)3 ∥Λ2
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)3 ∥Λ2
0∥Ψ1ds

≤C1n

d
, (A.75)

where C1 > 0 is a constant depending only on (µΘ, µΛ), and in (i) we use Eq. (A.73). Furthermore,

E
[〈
(Λ1λ1 − Λ̄1λ̄1)

2
〉
h,ε,t

]
≤2E
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1⟨(λ1 − λ̄1)
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4
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[
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4
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1

]
≤C2

√
ε, (A.76)

where C2 > 0 is a constant depending only on µΛ. Finally, we combine Eqs. (A.70), (A.71), (A.75) and (A.76),
and conclude that ∣∣∣∣ ∂∂tΦεn,t(h)

∣∣∣∣ ≤ C0
4
√
ε

for all t, h ∈ [0, 1], where C0 > 0 is a constant depending only on (µΘ, µΛ). This concludes the proof of the
lemma.

A.6 Achieving the Bayesian MMSE

In this section we prove the technical lemmas required to prove Theorem 2.4.5.

A.6.1 Proof of Lemma A.4.9

We define the set

Ω :=
{
|Λi| ≤ 2K0

√
log n : i ∈ [n]

}
.

By Eq. (A.16) we see that P(Ωc) ≤ 2n−3. Furthermore, on Ω we have A = Ā. For matrix X ∈ Rn×d, we
define the mapping M̄ : Rn×d → Rn×n such that M̄(X) = E[Λ̄Λ̄T | Ā = X]. Then we have

1

n
E
[∥∥∥ΛΛT − E[ΛΛT | A]

∥∥∥2
F

]1/2 (i)

≤ 1

n
E
[∥∥∥ΛΛT − M̄(A)

∥∥∥2
F

]1/2
(ii)

≤ 1

n
E
[∥∥∥Λ̄Λ̄T − M̄(A)

∥∥∥2
F

]1/2
+

1

n
E
[∥∥∥Λ̄Λ̄T −ΛΛT

∥∥∥2
F

]1/2
, (A.77)
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where (i) is by the fact that the posterior expectation achieves Bayesian MMSE, and (ii) is by triangle
inequality. Applying triangle inequality and Hölder’s inequality, we have

1
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E
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∥∥∥2
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∥∥∥2
F
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F
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E
[∥∥∥Λ̄Λ̄T − M̄(A)

∥∥∥4
F

]1/4
P(Ωc)1/4. (A.78)

Direct computation reveals that E[∥Λ̄Λ̄T−ΛΛT∥2F ]1/2/n = on(1) as n, d→∞, and E[∥Λ̄Λ̄T−M̄(A)∥4F ]1/4/n ≤
8K2

0 log n. As a result, we conclude that E[∥Λ̄Λ̄T− M̄(A)∥4F ]1/4P(Ωc)1/4/n = on(1). Combining these anal-
ysis with Eqs. (A.77) and (A.78) concludes the proof of the lemma.

A.6.2 Proof of Lemma A.4.10

Let W ,W ′ iid∼ GOE(n) that are independent of Λ. For t ∈ [0, 1], s ≥ 0, we define

Y
(s)
a,t :=

qΘ
√

(1− t)sΛΛT

n
+W ,

Y
(s)
b,t :=

√
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n
(q

1/2
Θ Λ̄+ r−1

n ḡ)(q
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n ḡ)T +W ′.

For x,y ∈ Rn, we define the corresponding truncated vectors x̄, ȳ ∈ Rn such that x̄i = xi1{|xi| ≤
2K0

√
log n} and ȳi = yi1{|yi| ≤ C3

√
log n} for all i ∈ [n]. The Hamiltonian that corresponds to (Y

(s)
a,t,Y

(s)
b,t )

can be expressed as

H
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n,t(x,y)
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1/2
Θ Λ̄+ r−1
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n ȳ)TW ′(q
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4n
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+
(1− t)sq2Θ

2n
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√
(1− t)sqΘ

2
xTWx− (1− t)sq2Θ

4n
∥x∥4.

The corresponding free energy density can be written as

Gn(t, s) :=
1

n
E
[
log

(∫
exp

(
H

(s)
n,t(x,y)

)
P⊗n
Λ (dx)P⊗n

N(0,1)(dy)

)]
,

where P⊗n
N(0,1) is the distribution of N(0, In). Invoking Lemma A.2.3 and Gaussian integration by parts, we

obtain that

∂
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Gn(t, s) =

s

4n2
E
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n ḡ)T | Y (s)
a,t,Y

(s)
b,t

]∥∥2
F

]
− sq2Θ

4n2
E
[∥∥E[ΛΛT | Y (s)

a,t,Y
(s)
b,t

]∥∥2
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]
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Leveraging Hölder’s inequality, we see that∣∣∣ ∂
∂t
Gn(t, s)

∣∣∣
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≤
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Θ Λ̄2ḡ1 + r−2
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+ on(1). (A.79)

The upper bound given in the last line of Eq. (A.79) is independent of t and converges to 0 as n, d → ∞.
Therefore, we conclude that as n, d→∞

sup
t∈(0,1),s∈[0,2]

∣∣∣ ∂
∂t
Gn(t, s)

∣∣∣→ 0,

which further implies that |Gn(1, s) − Gn(0, s)| = on(1) for all s ∈ [0, 2]. Recall that F(·, ·) is defined in
Eq. (2.12). Using [125, Theorem 13], we have Gn(0, s) = supq≥0 F(q2Θs, q)+on(1). Observe that s 7→ Gn(1, s)

is convex differentiable on (0,∞), and converges point-wisely to supq≥0 F(q2Θs, q) as n, d → ∞, the later is
differentiable at s = 1 for all but countably many values of qΘ > 0 according to [125, Proposition 17]. Invoking
Lemma A.2.4, Lemma A.2.3 and Gaussian integration by parts, we conclude that for all but countably many
qΘ > 0

lim
n→∞
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)(
q
1/2
Θ Λ̄+ r−1

n ḡ
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n ḡ)T/n− qΘΛ̄Λ̄T/n∥2F ] = 0, then the proof of the lemma
follows immediately from triangle inequality.

A.6.3 Proof of Lemma A.4.11

We define the set

Ω :=
{
|Θj | ≤ 2K2

√
log d : j ∈ [d]

}
.

By Eq. (A.18) we have P(Ωc) ≤ 2d−3. Furthermore, on the set Ω we have A = Ā. For X ∈ Rn×d, we define
the mapping M(X) := E[ΛΛT | Ā = X]. Leveraging triangle inequality and Hölder’s inequality, we obtain
that
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Since the posterior expectation minimizes the expected l2 risk, we then have
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.
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By the bounded-support assumption, we see that E[∥ΛΛT −M(A)∥4F ]1/4/n ≤ 2K2
1 . Thus, as n, d→∞,

1
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[∥∥∥ΛΛT −M(A)
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F

]1/4
P(Ωc)1/4 → 0,

which completes the proof of the lemma.

A.6.4 Proof of Lemma A.4.12

For t ∈ [0, 1], we define the interpolated Hamiltonian as

H
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n,t(λ,θ;h) :=
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where Z ′ = (Z ′
ij)i∈[n],j∈[d] is an independent copy of Z and is independent of everything else. Note that

H
[s]
n,t(λ,θ;h) is the Hamiltonian corresponding to the observations (A
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hΛΛT/n+W ′. Here, we recall that

W ′ ∼ GOE(n), and W ′,Z,Z ′ are mutually independent. We define the free energy density corresponding
to the Hamiltonian H [s]
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At the endpoints, we have Φ
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n,1(h) = Φn(s, 0, 0, h). We denote by ⟨·⟩[s]t,h the

expectation with respect to the posterior distribution P(· | A(s,t)
1 ,A

(s,t)
2 ,Y ′(h)). Then we have

∣∣∣ ∂
∂t

Φ
[s]
n,t(h)

∣∣∣ (i)=∣∣∣ s

2n
√
nd

∑
i∈[n],j∈[d]

E
[
⟨Λiλi(Θjθj − Θ̄j θ̄j)⟩[s]t,h

] ∣∣∣
(ii)

≤ s

2n
√
nd

∑
i∈[n],j∈[d]

E
[
⟨Λ2

iλ
2
i ⟩[s]t,h

]1/2
E
[
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2⟩[s]t,h
]1/2

, (A.80)

where (i) is by Gaussian integration by parts and Nishimori identity (Lemma A.2.3), and (ii) is by Hölder’s
inequality. For all j ∈ [d], using power mean inequality and Hölder’s inequality, we have

E
[
⟨(Θjθj − Θ̄j θ̄j)

2⟩[s]t,h
]
≤2E[Θ2

j ⟨(θj − θ̄j)
2⟩[s]t,h] + 2E[(Θj − Θ̄j)

2⟨θ̄2
j ⟩[s]t,h]

≤2E[Θ4
j ]

1/2E[⟨(θj − θ̄j)
2⟩[s]2t,h ]

1/2 + 2E[(Θj − Θ̄j)
4]1/2E[⟨θ̄2

j ⟩[s]2t,h ]
1/2

≤2E[Θ4
j ]

1/2E[(Θj − Θ̄j)
4]1/2 + 2E[(Θj − Θ̄j)

4]1/2E[Θ̄4
j ]

1/2. (A.81)

Notice that

E[(Θj − Θ̄j)
4] ≤

∫ ∞

2K2

√
log d

4x3P(|Θ0| ≥ x)dx ≤ 4

∫ ∞

4K2
2 log d

y exp
(
− y

K2
2

)
dy
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=− 4(yK2
2 +K4

2 ) exp
(
− y

K2
2

)∣∣∣∞
4K2

2 log d
=

4K4
2 + 16K4

2 log d

d4
. (A.82)

Combining Eqs. (A.80) to (A.82), we obtain that supt∈[0,1],h≥0,S0≥s≥0

∣∣∣ ∂∂tΦ(s)
n,t(h)

∣∣∣ → 0 as n, d → ∞, thus
completing the proof of the lemma.

A.6.5 Proof of Lemma A.4.13

Using Lemma A.4.12, we have limn,d→∞
∣∣Φ̄n(s, 0, 0, h)− Φn(s, 0, 0, h)

∣∣ = 0. Similar to the proof of Lemma A.4.8,
we can conclude that limn,d→∞ |Φn(s, 0, 0, h)− supq≥0 F(q2Θs2 + h, q)| = 0 as n, d→∞. Therefore, in order
to prove the lemma, it suffices to show

lim
n,d→∞

sup
a,a′∈[0,10]

∣∣Φ̄n(s, a, a′, h)− Φ̄n(s, 0, 0, h)
∣∣ = 0.

Using Gaussian integration by parts and Nishimori identity (Lemma A.2.3), we obtain that for all a, a′ ∈
[0, 10],

∂

∂εn
Φ̄n(s, a, a

′, h) =
a2

2d
E
[
Θ̄TE[Θ̄ | Ā(s),x′(a′), x̄(a),Y ′(h)]

]
≤ 50EΘ0∼µΘ

[Θ̄2
0],

∂

∂ε′n
Φ̄n(s, a, a

′, h) =
a′

2

2n
E
[
ΛTE[Λ | Ā(s),x′(a′), x̄(a),Y ′(h)]

]
≤ 50EΛ0∼µΛ

[Λ2
0].

(A.83)

Notice that if εn = ε′n = 0, then Φ̄n(s, a, a
′, h) = Φ̄n(s, 0, 0, h). Therefore, by Eq. (C.11), we conclude that

as n, d→∞,

sup
a,a′∈[0,10]

∣∣Φ̄n(s, a, a′, h)− Φ̄n(s, 0, 0, h)
∣∣ ≤ 50

(
EΛ0∼µΛ

[Λ2
0] + EΘ0∼µΘ

[Θ̄2
0]
)
(εn + ε′n)→ 0,

thus completing the proof of the lemma.

A.6.6 Proof of Lemma A.4.14

Since |Θ̄0| ≤ 2K2

√
log d, we then have∣∣∣E[⟨U(θ̄(1))(θ̄(1))Tθ̄(2)/d⟩1,a,a′,h]− E[⟨(θ̄(1))Tθ̄(2)/d⟩1,a,a′,h]E[⟨U(θ̄(1))⟩1,a,a′,h]

∣∣∣
≤4K2

2 log dE[⟨|U(θ̄)− E[⟨U(θ̄)⟩1,a,a′,h]|⟩1,a,a′,h]. (A.84)

Using Gaussian integration by parts and Nishimori identity (Lemma A.2.3), we have

E[⟨(θ̄(1))Tθ̄(2)/d⟩1,a,a′,h]E[⟨U(θ̄(1))⟩1,a,a′,h] = aE[⟨(θ̄(1))Tθ̄(2)/d⟩1,a,a′,h]2, (A.85)

E[⟨U(θ̄(1))(θ̄(1))Tθ̄(2)/d⟩1,a,a′,h] = aE[⟨((θ̄(1))Tθ̄(2)/d)2⟩1,a,a′,h]. (A.86)

Next, we combine Eqs. (A.84) to (A.86), and conclude that for all a ∈ [10−1, 10],

E[⟨((θ̄(1))Tθ̄(2)/d− E[⟨(θ̄(1))Tθ̄(2)/d⟩1,a,a′,h])2⟩1,a,a′,h]
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≤40K2
2 log dE[⟨|U(θ̄)− E[⟨U(θ̄)⟩1,a,a′,h]|⟩1,a,a′,h].

A.6.7 Proof of Lemma A.4.15

One can verify that ϕ̄n(1, a, a′, h) is twice differentiable for a, a′ ∈ (0, 10). Using Gaussian integration by
parts and Nishimori identity, we can compute its partial derivatives:

∂

∂a
ϕ̄n(1, a, a

′, h) = εn⟨U(θ̄)⟩1,a,a′,h, (A.87)

∂2

∂a2
ϕ̄n(1, a, a

′, h) = nε2n⟨(U(θ̄)− ⟨U(θ̄)⟩1,a,a′,h)2⟩1,a,a′,h + εn⟨2Θ̄Tθ̄/d− θ̄Tθ̄/d⟩1,a,a′,h. (A.88)

Notice that |Θ̄0| ≤ 2K2

√
log d, then

∣∣E[ ∂∂a ϕ̄n(1, a, a′, h)]∣∣ = εnaE[⟨Θ̄Tθ̄/d⟩1,a,a′,h] ≤ 40εnK
2
2 log d for all

a, a′ ∈ (0, 10). Using these results, we further obtain that

⟨(U(θ̄)− ⟨U(θ̄)⟩1,a,a′,h)2⟩1,a,a′,h ≤
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∂a2
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2εn log d
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∣∣∣
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+ 12K2
2εn log d
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da′

≤CK2
2n

−1ε−1
n log d, (A.89)

where C > 0 is a numerical constant. Leveraging Eq. (A.88), we conclude that the following two functions
are convex for all fixed a′ ∈ (0, 10) and h ≥ 0:

a 7→ ϕ̄n(1, a, a
′, h) + 6εnK

2
2a

2 log d,

a 7→ E[ϕ̄n(1, a, a′, h)] + 6εnK
2
2a

2 log d.

By Lemma A.2.5, for all a ∈ [1, 2], b ∈ (0, 1/2), a′ ∈ [1/2, 3] and h ≥ 0, we have

E
[∣∣∣∣ ∂∂aϕ̄n(1, a, a′, h)− E[

∂

∂a
ϕ̄n(1, a, a

′, h)]

∣∣∣∣]
≤E

[
∂

∂a
ϕ̄n(1, a+ b, a′, h)− ∂

∂a
ϕ̄n(1, a− b, a′, h)

]
+ 24εnK

2
2b log d+

3vn(h)

b
. (A.90)

Again we use the fact that
∣∣E[ ∂∂a ϕ̄n(1, a, a′, h)]∣∣ ≤ 40εnK

2
2 log d for all a, a′ ∈ (0, 10), and conclude that

∫ 2

1

E
[
∂

∂a
ϕ̄n(1, a+ b, a′, h)− ∂
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ϕ̄n(1, a− b, a′, h)

]
da

=E
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ϕ̄n(1, b+ 2, a′, h)− ϕ̄n(1, b+ 1, a′, h)− ϕ̄n(1, 2− b, a′, h) + ϕ̄n(1, 1− b, a′, h)

]
≤C ′K2

2bεn log d, (A.91)

where C ′ > 0 is a numerical constant. Then we combine Eqs. (A.90) and (A.91) and obtain that∫ 2

1

∫ 2

1

E
[∣∣∣∣ ∂∂aϕ̄n(1, a, a′, h)− E[

∂

∂a
ϕ̄n(1, a, a

′, h)]

∣∣∣∣] dada′ ≤ C ′′
(
bεnK

2
2 log d+

vn(h)

b

)
, (A.92)
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where C ′′ > 0 is another numerical constant. Later in Lemma A.4.16 we will see that under the current
conditions, for n, d large enough we have vn(h) < 1

4K
2
2εn log d. Since b is arbitrary in (0, 1/2), we can then

take b =
√
vn(h)/(εnK2

2 log d) in Eq. (A.92) and apply this to Eq. (A.87), which gives

∫ 2

1

∫ 2

1

E
[∣∣⟨U(θ̄)⟩1,a,a′,h − E[⟨U(θ̄)⟩1,a,a′,h]

∣∣] dada′ ≤ 2C ′′K2

√
vn(h)ε

−1
n log d. (A.93)

Finally, we combine Hölder’s inequality, Eqs. (A.89) and (A.93) and concludes the proof of the lemma.

A.6.8 Proof of Lemma A.4.16

Conditioning on (Λ, Θ̄), we consider the mapping

f : (Z, g, g′,
√
nW ′) 7→ ϕ̄n(1, a, a

′, h).

For n, d large enough, the following inequality holds for all a, a′ ∈ [0, 10].

∥∇f∥2 ≤ CK2
1K

2
2d

1/2n−3/2 log d,

where C > 0 is a numerical constant. By Gaussian Poincaré inequality [189], we conclude that for n, d large
enough

EZ,g,g′,W ′

[(
ϕ̄n(1, a, a

′, h)− EZ,g,g′,W ′ [ϕ̄n(1, a, a
′, h)]

)2] ≤ CK2
1K

2
2d

1/2n−3/2 log d. (A.94)

In the above display, the expectations are taken over (Z, g, g′,W ′).
Next, we show that EZ,g,g′,W ′ [ϕ̄n(1, a, a

′, h)] (as a function of (Λ, Θ̄)), concentrates around its expec-
tation. Notice that for n, d large enough, for all i ∈ [n], j ∈ [d] we have∣∣∣∣ ∂

∂Λi
EZ,g,g′,W ′ [ϕ̄n(1, a, a

′, h)]

∣∣∣∣ ≤ C ′K1K
2
2d

1/2n−3/2 log d,∣∣∣∣ ∂

∂Θ̄j
EZ,g,g′,W ′ [ϕ̄n(1, a, a

′, h)]

∣∣∣∣ ≤ C ′′K2
1K2d

−1/2n−1/2(log d)1/2,

where C ′, C ′′ > 0 are numerical constants. By Efron-Stein inequality [189], we see that there exists a
numerical constant C ′′′ > 0, such that for n, d large enough

E
[(
EZ,g,g′,W ′ [ϕ̄n(1, a, a

′, h)]− E[ϕ̄n(1, a, a′, h)]
)2] ≤ C ′′′K4

1K
4
2dn

−2(log d)2. (A.95)

Finally, we combine Eqs. (A.94) and (A.95) and conclude that for n, d large enough, there exists a numerical
constant C1 > 0, such that for all a, a′ ∈ [0, 10]

E
[(
ϕ̄n(1, a, a

′, h)− E[ϕ̄n(1, a, a′, h)]
)2] ≤ C2

1K
4
1K

4
2dn

−2(log d)2,

which concludes the proof of the lemma using Cauchy–Schwarz inequality.
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A.6.9 Proof of the first claim of Lemma A.4.17

Invoking Lemma A.4.13, as n, d→∞ we have

sup
a∈[0,2a∗],a′∈[0,2a′∗]

∣∣∣∣Φ̄n(1, a, a′, h)− sup
q≥0
F(q2Θ + h, q)

∣∣∣∣ = on(1). (A.96)

By Jensen’s inequality, for a ∼ Unif[a∗/2, a∗] and a′ ∼ Unif[a′∗/2, a
′
∗] we have

1

n2
E
[∥∥E[ΛΛT | Ā(1),Y ′(h)]− E[ΛΛT | Ā(1),x′(a′), x̄(a),Y ′(h)]

∥∥2
F

]
≤ 1

n2
E
[∥∥E[ΛΛT | Ā(1),Y ′(h)]− E[ΛΛT | Ā(1),x′(a′∗), x̄(a∗),Y

′(h)]
∥∥2
F

]
. (A.97)

Notice that the mapping h 7→ Φ̄n(1, a∗, a
′
∗, h) is convex and differentiable, and h 7→ supq≥0 F(q2Θ + h, q) is

differentiable for all q2Θ + h ∈ D. Therefore, using Gaussian integration by parts, Lemmas A.2.3 and A.2.4,
we conclude that for h+ q2Θ ∈ D, as n, d→∞ the right hand side of Eq. (A.97) converges to 0 as n, d→∞.
Furthermore,

∂

∂a′
E
[
∥Λ1,a,a′,h∥2

]
= ε′na

′E
[
∥E[ΛΛT | Ā(1), x̄(a),x′(a′),Y ′(h)]−Λ1,a,a′,hΛ

T
1,a,a′,h∥2F

]
≤ 4K4

1n
2ε′na

′.

Therefore, for a ∼ Unif[a∗/2, a∗] and a′ ∼ Unif[a′∗/2, a
′
∗], using the above equation we have

1

n2
E
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∥E[ΛΛT | Ā(1),x′(a′), x̄(a),Y ′(h)]−Λ1,a,a′,hΛ
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E
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da′da

≤ 4K2
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nε′n(a
′
∗)

2
, (A.98)

which converges to zero as n, d→∞ under the current assumptions. Eqs. (A.97) and (C.24) imply

1

n2
∥E[ΛΛT | Ā(1),Y ′(h)]∥2F =

1

n2
∥Λ1,a,a′,h∥4 + oP (1).

By Corollary A.4.1 we have

1

n
∥Λ1,a,a′,h∥2 =

1

n
E
[
∥Λ1,a,a′,h∥2 | a, a′

]
+ oP (1).

By Jensen’s inequality, for all a ∈ [a∗/2, a∗] and a′ ∈ [a′∗/2, a
′
∗] we have

E
[
∥Λ1,a,a′,h∥2 | a, a′

]
≤ E

[
∥Λ1,a∗,a′∗,h

∥2
]
.

Next, we combine the above equations and obtain that as n, d→∞

1

n2
∥E[ΛΛT | Ā(1),Y ′(h)]∥2F ≤

1

n2
E
[
∥Λ1,a∗,a′∗,h
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]2

+ oP (1).
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Similarly, if we consider a ∼ Unif[a∗, 2a∗] and a′ ∼ Unif[a′∗, 2a
′
∗], then we have

1

n2
∥E[ΛΛT | Ā(1),Y ′(h)]∥2F ≥

1

n2
E
[
∥Λ1,a∗,a′∗,h

∥2
]2

+ oP (1).

Since support(Λ0) ⊆ [−K1,K1], by Lebesgue dominated convergence theorem we have

lim
n,d→∞

1

n2
E
[
∥Λ1,a∗,a′∗,h

∥2
]2

= lim
n,d→∞

1

n2
E[∥E[ΛΛT | Ā(1),Y ′(h)]∥2F ]. (A.99)

By Lemma A.4.13, as n, d → ∞ we have Φ̄n(1, 0, 0, h) → supq≥0 F(q2Θ + h, q). Furthermore, the mapping
h 7→ Φ̄n(1, 0, 0, h) is convex and differentiable. Therefore, if q2Θ+h ∈ D, then by Lemma A.2.4 and Gaussian
integration by parts we have

lim
n,d→∞

1

4n2
E[∥E[ΛΛT | Ā(1),Y ′(h)]∥2F ] =

∂

∂h
sup
q≥0
F(q2Θ + h, q). (A.100)

The proof of the first claim follows immediately from Eqs. (A.99) and (A.100).

A.6.10 Proof of the second claim of Lemma A.4.17

We let a ∼ Unif[a∗/2, a∗] and a′ ∼ Unif[a′∗/2, a
′
∗], then by Corollary A.4.1, we have

1

n
∥Λ1,a,a′,h∥2 =

1

n
E
[
∥Λ1,a,a′,h∥2 | a, a′

]
+ δn,1,

1√
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E
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∥Θ̄1,a,a′,h∥2 | a, a′

]
+ δn,2,

where E[δ2n,1] and E[δ2n,2] are random variables that converge to 0 as n, d→∞. By Eq. (A.31) we have
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In the above equation, δn,0 is a random variable satisfying E[|δn,0|] → 0 as n, d → ∞. Therefore, for all
a ∈ [a∗/2, a∗] and a′ ∈ [a′∗/2, a

′
∗]
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+
|δn,1|
2
√
nd

E
[
∥Θ̄1,a,a′,h∥2

]
+
|δn,2|
2n

E
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∥Λ1,a,a′,h∥2

]
+ δn,0, (A.102)

Notice that

lim sup
n,d→∞

1√
nd

E
[
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∥2
]
<∞, lim sup
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∥2
]
<∞. (A.103)
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We plug Eq. (A.103) into Eq. (A.102) then take the expectation, which implies that as n, d→∞ we have

lim inf
n,d→∞
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]
= DΘ(h). (A.104)

Similarly, if we let a ∼ Unif[a∗, 2a∗] and a′ ∼ Unif[a′∗, 2a
′
∗], then we can conclude that

lim sup
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= DΘ(h). (A.105)

Notice that DΘ(h) = 2q2Θ
∂
∂h supq≥0 F(q2Θ+h, q), then the proof of the second claim follows from Eq. (A.104),

Eq. (A.105) and the first claim.

A.7 Proofs for the Gaussian mixture clustering example

A.7.1 Proof of Proposition 2.5.1 claim (a)

We define the pairwise overlap achieved by estimator Λ̂ as

PairOverlapn :=
2

n2

∑
i<j

1

{
1{Λi = Λj} = 1{Λ̂i = Λ̂j}

}
.

We notice that

PairOverlapn =
2

n2

∑
i<j

(
1{Λi = Λ̂i}1{Λj = Λ̂j}+ (1− 1{Λi = Λ̂i})(1− 1{Λj = Λ̂j})

)
=2Overlap2

n + 1− 2Overlapn + on(1). (A.106)

According to [125, Section 2.3], under the symmetric model (2.9), if qΘ ≤ 1, then we have limn→∞ MMSEsymm
n (µΛ; qΘ) =

1. This is also the mean square error achieved by the constant estimator 0n×n. For an estimate of the la-
bels Λ̂ ∈ {−1,+1}n and a ∈ (0, 1), we define the rescaled vector Λ̂a :=

√
aΛ̂ ∈ {−√a,+√a}n. Then by

Theorem 2.4.4, we have
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Theorem 2.4.4 implies that limn,d→∞ MMSEasym
n (µΛ, µΘ) = 1, thus

lim sup
n,d→∞

E [PairOverlapn] ≤
a2 + 2a

4a
,
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which holds for every a ∈ (0, 1). Let a → 0+, we then conclude that lim supn,d→∞ E[PairOverlapn] ≤
1/2. Next, we plug this result into Eq. (A.106) then apply dominated convergence theorem, which gives
Overlapn

P→ 1/2. In summary, partial recovery of component identity is impossible in the current setting.

A.7.2 Proof of Theorem 2.5.1 part (a)

Let Λ̂ ∈ Rn×k be any estimator of the cluster assignments constructed based on data matrix A. For a > 0,
we define Λ̂a :=

√
aΛ̂. Under the current conditions, as n, d→∞ we have

MMSEasym
n (µΛ, µΘ)

=k−2(k − 1) + on(1)

≤ 1

n2
E
[∥∥ΛΛT − k−11n×n − Λ̂aΛ̂

T
a

∥∥2
F

]
=k−2(k − 1) +

a2

n2

∑
i,j∈[n]

E
[
1{Λ̂i = Λ̂j}

]
− 2a

n2

∑
i,j∈[n]

E
[
1{Λ̂i = Λ̂j}(1{Λi = Λj} − k−1)

]
+ on(1)

≤k−2(k − 1) + a2 − 2a

n2

∑
i,j∈[n]

E
[
1{Λ̂i = Λ̂j}(1{Λi = Λj} − k−1)

]
+ on(1).

Using the above equation we can conclude that

lim sup
n,d→∞

1

n2

∑
i,j∈[n]

E
[
1{Λ̂i = Λ̂j}(1{Λi = Λj} − k−1)

]
≤ a

2
.

Since a > 0 is arbitrary, we then have

lim sup
n,d→∞

1

n2

∑
i,j∈[n]

E
[
1{Λ̂i = Λ̂j}(1{Λi = Λj} − k−1)

]
≤ 0. (A.107)

For s, r ∈ [k], we define

Csr :=
1

n

n∑
i=1

1{Λ̂i = es,Λi = er}. (A.108)

We immediately see that Csr ≥ 0 and
∑
s∈[k]

∑
r∈[k] Csr = 1. Furthermore, notice that

1

n2

∑
i,j∈[n]

1{Λ̂i = Λ̂j ,Λi = Λj} =
1

n2

∑
i,j∈[n]

∑
s,r∈[k]

1{Λ̂i = Λ̂j = es,Λi = Λj = er}

=
∑
s,r∈[k]

( 1
n

∑
i∈[n]

1{Λ̂i = es,Λi = er}
)2

(A.109)

=
∑
s,r∈[k]

C2
sr,

1

kn2

∑
i,j∈[n]

1{Λ̂i = Λ̂j} =
1

kn2

∑
i,j∈[n]

∑
s∈[k]

1{Λ̂i = es}1{Λ̂j = es}
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=
1

k

∑
s∈[k]

( 1
n

∑
i∈[n]

∑
r∈[k]

1{Λ̂i = es,Λi = er}
)2

(A.110)

=
1

r

∑
s∈[k]

(Cs1 + · · ·+ Csk)
2.

Next, we subtract Eq. (A.109) by Eq. (A.110) and apply Eq. (A.107), which gives

lim
n→∞

E
[ ∑
s∈[k]

∑
1≤r1<r2≤k

(Csr1 − Csr2)2
]
= 0.

Note that for all s ∈ [k], there exists rs ∈ [k], such that [k] = {rs : s ∈ [k]} and Overlapn =
∑
s∈[k] Csrs .

Combining the above results, we conclude that Overlapn = k−1 + oP (1), thus completing the proof of part
(a).

A.7.3 Proof of Theorem 2.5.1 part (b)

Suppose the statement is not true, then for any Λ̂ and any subsequence of N+, there further exists a
subsequence {ni}i∈N+ ⊆ N+ of the previous subsequence, such that ni < ni+1 and limi→∞ E[Overlapni

] =

k−1. Therefore, Overlapni

P→ k−1. In the following parts of the proof, we will restrict to this subsequence
{ni}i∈N+

.
We assume Λ̂ ∈ Rn×k such that Λ̂

d
= µ(Λ = · | A). Recall that for s, r ∈ [k], Csr is defined in

Eq. (A.108). Furthermore, notice that Λ̂
d
= Λ, then by the law of large numbers, for all s, r ∈ [k] we have

Cs1 + Cs2 + · · ·+ Csk
P→ 1

k
, C1r + C2r + · · ·+ Ckr

P→ 1

k
. (A.111)

For δ > 0, if C11 > k−2 + δ, then by Eq. (A.111)
∑

2≤s,r≤k Csr > (1 − k−1)2 + δ + oP (1). As a result, we
conclude that there exists a permutation π of {2, 3, · · · , k}, such that C2π(2)+C3π(3)+ · · ·+Ckπ(k) ≥ k−2(k−
1)+(r−1)−1δ+oP (1). Therefore, Overlapn ≥ C11+C2π(2)+C3π(3)+· · ·+Ckπ(k) > k−1+k(k−1)−1δ+oP (1).
For s, r ∈ [k], we define the set Sδsr := {Csr > k−2 + δ}. Since Overlapni

P→ k−1, using the above analysis
we derive that limi→∞ P(Sδ11) = 0. Indeed, we can repeat such analysis for all s, r ∈ [k] and conclude that
limi→∞ P(Sδsr) = 0, thus Csr ≤ k−2 + δ + oP (1) along the subsequence {ni}i∈N+

. Since
∑
s,r∈[k] Csr = 1

and δ is arbitrary, we deduce that Csr
P→ k−2 along the subsequence {ni}i∈N+

. This further implies that
Csr

P→ k−2.
However, according to [18, Theorem 2] and Theorem 2.4.5, we see that under the conditions of this part

lim inf
n,d→∞

1

n2

∑
i,j∈[n]

E
[
1{Λ̂i = Λ̂j}1{Λi = Λj}

]
= lim inf

n→∞

1

n2

∑
i,j∈[n]

E
[
E[1{Λi = Λj} | A]2

]
> k−2.

Finally, we plug Eq. (A.109) into the formula above, which leads to lim infn,d→∞ E[
∑
s,k∈[r] C

2
sk] > k−2. This

is in contradiction with the previously established claim that Csr
P→ k−2 for all s, r ∈ [k], thus completing

the proof of part (b).



Appendix B

The estimation error of general first

order methods

B.1 Technical definitions and lemmas

We collect some useful technical definitions and lemmas, some of which we state without proof. First, we
recall the definition of the Wasserstein metric of order 2 on the space P2(Rk):

W2(µ, µ
′)2 = inf

Π
E(A,A′)∼Π[∥A−A′∥2] ,

where the infimum is over couplings Π between µ and µ′. That is, Π ∈P2(Rk ×Rk) whose first and second
marginals are µ (where a marginal here involves a block of k coordinates). It is well known that W2(µ, µ

′)

is a metric on P2(Rk) [193, pg. 94]. When a sequence of probability distributions µn converges to µ in the
Wasserstein metric of order 2, we write µn

W→ µ. We also write An
W→ A when An ∼ µn, A ∼ µ for such a

sequence.

Lemma B.1.1. If f : Rr → R and g : Rr → R are pseudo-Lipschitz of order k1 and k2, respectively, then
their product is pseudo-Lipschitz of order k1 + k2.

Lemma B.1.2. If a sequence of random vectors Xn
W→ X, then for any pseudo-Lipschitz function f of

order 2 we have E[f(Xn)]→ E[f(X)].

Lemma B.1.3. Consider a sequence of random variables (An,Bn)
d→ (A,B) with values in R × Rk such

that (An,Bn)
d→ (A,B) and An

d
= A for all n. Then, for any bounded measurable function f : R×Rk → R

for which b 7→ f(a, b) is continuous for all a, we have E[f(An,Bn)]→ E[f(A,B)].
Further, for any function ϕ : R×Rk → Rk′ (possibly unbounded) which is continuous in all but the first

coordinate, we have ϕ(An,Bn)
d→ ϕ(A,B).

Proof.[Proof of Lemma B.1.3] Without loss of generality, f takes values in [0, 1]. First we show that for any
set S × I where S ⊂ R is measurable and I ⊂ Rk is a rectangle whose boundary has probability 0 under B

that
µAn,Bn

(S × I)→ µA,B(S × I) . (B.1)

129



APPENDIX B. THE ESTIMATION ERROR OF GENERAL FIRST ORDER METHODS 130

First, we show this is true for S = K a closed set. Fix ϵ > 0. Let ϕϵK : R → [0, 1] be a continuous function
which is 1 on K and 0 for all points separted from K by distance ϵ. Similarly define ϕϵI : Rk → R. Then

E[ϕϵK(An)ϕ
ϵ
I(Bn)] ≥ µAn,Bn(K × I) ≥ E[ϕϵK(An)ϕ

ϵ
I(Bn)]− ϵ− µBn(spt(ϕ

ϵ
I) \ I) .

Because the boundary of I has measure 0 under µB, we have limϵ→0 lim supn→∞ µBn
(spt(ϕϵI)\ I) = 0. Also,

limϵ→0 limn→∞ E[ϕϵK(An)ϕ
ϵ
I(Bn)] = limϵ→0 = E[ϕϵK(A)ϕϵI(B)] = µA,B(K × I). Thus, taking ϵ → ∞ after

n → ∞, the previous display gives µAn,Bn(K × I) → µA,B(K × I). For S = G an open set, we can show
µAn,Bn

(G × I) → µA,B(G × I) by a similar argument: take instead ϕϵK to be 0 outside of G and 1 for all
points in G separated from the boundary by at least ϵ, and likewise for ϕϵI . By Theorem 12.3 of [35], we can
construct K ⊂ S ⊂ G such that K is closed and G is open, and µA(K) > µA(S) − ϵ, µA(G) < µA(S) + ϵ.
The previous paragraph implies that

µA,B(S × I)− ϵ ≤ µA,B(K × I) ≤ lim inf
n→∞

µAn,Bn(S × I)

≤ lim sup
n→∞

µAn,Bn
(S × I) ≤ µA,B(G× I) ≤ µA,B(S × I) + ϵ .

Taking ϵ→ 0, we conclude (B.1).
We now show (B.1) implies the lemma. Fix ϵ > 0. Let M be such that P(Bn ∈ [−M,M ]k) > 1−ϵ for all

n and P(B ∈ [−M,M ]k) > 1− ϵ, which we may do by tightness. For each a, let δ(a, ϵ) = sup{0 < ∆ ≤M |
∥b−b′∥∞ < ∆⇒ |f(a, b)−f(a, b′)| < ϵ}. Because continuous functions are uniformly continuous on compact
sets, the supremum is over a non-empty, bounded set. Thus, δ(a, ϵ) is positive and bounded above by M for
all a. Further, δ(a, ϵ) is measurable and non-decreasing in ϵ. Pick δ∗ such that P(δ(A, ϵ) < δ∗) < ϵ, which
we may do because δ(a, ϵ) is positive for all a. We can partition [−M,M ]k into rectangles with side-widths
smaller than δ∗ such that the probability that B lies on the boundary of one of the partitioning rectangles
is 0. Define f−(a, b) :=

∑
ι 1{b ∈ Iι} infb′∈Iι f(a, b

′) and f+(a, b) :=
∑
ι 1{b ∈ Iι} supb′∈Iι f(a, b

′), and
note that on {δ(a, ϵ) < δ∗} × [−M,M ]k, we have f−(a, b) ≤ f(a, b) ≤ f+(a, b) and |f(a, b) − f−(a, b)| < ϵ

and |f(a, b) − f+(a, b)| < ϵ. Thus, by the boundedness of f and the high-probability bound on {δ(a, ϵ) <
δ∗} × [−M,M ]k

E[f−(An,Bn)]− 2ϵ < E[f(An,Bn)] < E[f+(An,Bn)] + 2ϵ ,

E[f−(A,B)]− 2ϵ < E[f(A,B)] < E[f+(A,B)] + 2ϵ .
(B.2)

We show that E[f−(An,Bn)] → E[f−(A,B)]. Fix ξ > 0. Take 0 = x0 ≤ . . . ≤ xN = 1 such that
xj+1 − xj < ξ for all j. Let Sjι = {a | infb′∈Iι f(a, b

′) ∈ [xj , xj+1)}. Then

∑
ι,j

xj1{a ∈ Sjι, b ∈ Iι}+ ξ ≥ f−(a, b) ≥
∑
ι,j

xj1{a ∈ Sjι, b ∈ Iι} .

By (B.1), we conclude E[
∑
ι,j xj1{An ∈ Sjι,Bn ∈ Iι}] → E[

∑
ι,j xj1{A ∈ Sjι,B ∈ Iι}]. Combined with

the previous display and taking ξ → 0, we conclude that E[f−(An,Bn)] → E[f−(A,B)]. Similarly, we may
argue that E[f+(An,Bn)] → E[f+(A,B)]. The first statment in the lemma now follows from taking ϵ → 0

after n→∞ in (B.2).
The second statement in the lemma follows by observing that for any bounded continuous function

f : Rk′ → R, we have that f ◦ ϕ is bounded and is continuous in all but the first coordinate, so that we may
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apply the first part of the lemma to conclude E[f(ϕ(An,Bn))]→ E[f(ϕ(A,B))].

We will sometimes use the following alternative form of recursion (3.5) defining the lower bound in the
high-dimensional regression model.

Lemma B.1.4. Consider a family, indexed by x ∈ R, of bounded probability densities p(·|x, u) with respect
to some base measure µY . Then for τ̃ > 0 and σ ≥ 0 we have that

1

τ̃2
E[E[G1|Y,G0, U ]2] = EG0,Y

[(
d

dx
logEG1

p(Y |x+ σG0 + τ̃G1, U)
∣∣∣
x=0

)2
]
,

where G0, G1
iid∼ N(0, 1) and Y |G0, G1, U had density p(·|σG0+ τ̃G1, U) with respect to µY . In particular, the

derivatives exist. (In this case, we may equivalently generate Y = h(σG0 + τ̃G1,W ) for (W , U) ∼ µW ,U ).

The preceding lemma applies, in particular, for p as in R4. It then provides an alternative form of the
second equation in recursion (3.5).
Proof.[Lemma B.1.4] We have

EG1p(Y |x+ σG0 + τ̃G1, U) =

∫
p(Y |σG0 + s, U)

1√
2πτ̃

e−
1

2τ̃2 (s−x)2dg ,

so that

d

dx
EG1

p(Y |x+ σG0 + τ̃G1, U) =
1

τ̃2

∫
p(Y |σG0 + s, U)

(s− x)√
2πτ̃

e−
1

2τ̃2 (s−x)2dg ,

where the boundedness of of p allows us to exchange integration and differentition. Thus,

d

dx
logEG1p(Y |x+ σG0 + τ̃G1, U) =

1

τ̃
E[G1|Y,G0, U ] .

The result follows.

Finally, we collect some results on the Bayes risk with respect to quadratically-bounded losses ℓ :

Rk × Rk → R≥0. Recall that quadratically-bounded means that ℓ is pseudo-Lipschitz of order 2 and also
satisfies

|ℓ(ϑ,d)− ℓ(ϑ′,d)| ≤ C
(
1 +

√
ℓ(ϑ,d) +

√
ℓ(ϑ′,d))

)
∥ϑ− ϑ′∥ . (B.3)

We consider a setting (Θ,V ) ∼ µΘ,V ∈ P2(Rk × Rk), Z ∼ N(0, Ik) independent and τ,K,M ≥ 0. Define
Θ(K) by Θ

(K)
i = Θi1{|Θi| ≤ K}. Denote by µΘ(K),V the joint distribution of Θ(K) and V , and by

µΘ(K)|V : Rk × B → [0, 1] a regular conditional probability distribution for Θ(K) conditioned on V . Define
the posterior Bayes risk

R(y, τ,v,K,M) := inf
∥d∥∞≤M

∫
1

Z
ℓ(ϑ,d)e−

1
2τ2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ) , (B.4)
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where Z =
∫
e−

1
2τ2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ) is a normalization constant. It depends on y, τ,v,K. When
required for clarity, we write Z(y, τ,v,K).

Lemma B.1.5. The following properties hold for the Bayes risk with respect to pseudo-Lipschitz losses of
order 2 satsifying (B.3).

(a) For any τ,K,M , with K,M possibly equal to infinity, the Bayes risk is equal to the expected posterior
Bayes risk. That is,

inf
θ̂(·)

E[ℓ(Θ(K), θ̂(Θ(K) + τz,V )] = E[R(Y (K), τ,V ,K,M)] , (B.5)

where Y (K) = Θ(K) + τZ with Z ∼ N(0, Ik) independent of Θ(K) and the infimum is taken over all
measurable functions (Rk)2 → [−M,M ]k. Moreover,

E[R(Θ(K) + τZ, τ,V ,K,∞)] = lim
M→∞

E[R(Θ(K) + τZ, τ,V ,K,M)] . (B.6)

(b) For a fixed K < ∞, the posterior Bayes risk is bounded: R(y, τ,v,K,M) ≤ R̄(K) for some function
R̄ which does not depend on y, τ,v,M . Further, for K <∞ the function (y, τ) 7→ R(y, τ,v,K,M) is
continuous on Rk × R>0.

(c) The Bayes risk is jointly continuous in truncation level K and noise variance τ . This is true also at
K =∞:

E[R(Θ(K) + τZ, τ,V ,K,∞)] = lim
K→∞
τ ′→τ

E[R(Θ(K) + τ ′Z, τ ′,V ,K,∞)] , (B.7)

where the limit holds for any way of taking K, τ ′ to their limits (ie., sequentially or simultaneously).

Proof.[Proof of Lemma B.1.5(a)] For any measurable θ̂ : Rk × Rk → [−M,M ]k,

E[ℓ(Θ(K), θ̂(Θ(K) + τZ,V ))] = E[E[ℓ(Θ(K), θ̂(Θ(K) + τZ,V ))|Θ(K) + τZ,V ]]

≥ E[R(Θ(K) + τZ, τ,V ,K,M)] . (B.8)

For M <∞, equality obstains. Indeed, we may define

θ̂(M)(y,v; τ) = arg min
∥d∥∞≤M

∫
1

Z
ℓ(ϑ,d)e−

1
2τ2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ) , (B.9)

because the integral is continuous in d by dominated convergence. Then E[ℓ(Θ(K), θ̂(M)(Y ,V ; τ))] =

E[R(Y , τ,V ,K,M)] when Y = Θ(K) + τZ. Observe R(y, τ,v,K,M) ↓ R(y, τ,v,K,∞) as M → ∞ with
the other arguments fixed. Thus, E[R(Θ(K) + τZ, τ,V ,K,M)] ↓ E[R(Θ(K) + τZ, τ,V ,K,∞)] in this limit.
Because E[R(Θ(K) + τZ, τ,V ,K,∞)] is a lower bound on the Bayes risk at M = ∞ by (B.8) and we may
achieve risk arbitrarily close to this lower bound by taking M →∞ in (B.9), we conclude (B.5) at M =∞
as well.
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Proof.[Proof of Lemma B.1.5(b)] The quantityR(y, τ,v,K,M) is non-negative. Define R̄(K) = max∥ϑ∥∞≤K ℓ(ϑ,0).
Observe that R(y, τ,v,K,M) ≤ R̄(K) for all y, τ,v,K,M . Let p∗(θ|y, τ,v,K) = 1

Z e
− 1

2τ2 ∥y−ϑ∥2

. For any
fixed d, we have∥∥∥∥∇y

∫
ℓ(ϑ,d)p∗(ϑ|y, τ,v,K)µΘ(K)|V (v,dϑ)

∥∥∥∥ ≤ ∫ ℓ(ϑ,d)p∗(ϑ|y, τ, v) ∥∇y log p∗(ϑ|y, τ,v)∥µΘ(K)|V (v,dϑ)

≤ 2K
√
k

τ2

∫
ℓ(ϑ,d)p∗(ϑ|y, τ,v)µΘ(K)|V (v,dϑ) ,

where we have used that ∥∇y log p∗(ϑ|y, τ,v)∥ = 1
τ2 (ϑ − EΘ(K) [Θ(K)]) ≤ 2K

√
k/τ2, and the expectation

is taken with respect to Θ(K) having density p∗(ϑ|y, τ,v) with respect to µΘ(K)|V (v, ·). Thus, for fixed
τ,d,v satisfying

∫
ℓ(ϑ,d)p∗(ϑ|y, τ,v)µΘ|V (v,dϑ) ≤ R̄, the function y 7→

∫
ℓ(ϑ,d)p∗(ϑ|y, τ,v)µΘ|V (v,dϑ)

is 2K
√
kR̄/τ2-Lipschitz. Because the infimum defining R can be taken over such d and infima retain a

uniform Lipschitz property, R(y, τ,v,K,M) is 2K
√
kR̄/τ2-Lipschitz in y for fixed τ,v,K,M . By a similar

argument, we can establish that R(y, τ,v,K,M) is 2(K2k+2∥y∥K
√
k)/τ̄3-Lipschitz in τ on the set τ > τ̄ for

any fixed τ̄ > 0 and any fixed y,v,K,M . We conclude (y, τ) 7→ R(y, τ,v,K,M) is continuous on Rk×R>0.
Lemma B.1.5(b) has been shown.

Proof.[Proof of Lemma B.1.5(c)] Finally, we prove (B.7). For any K > 0, we may write1

µΘ(K)|V (v, ·) = µΘ|V (v, ·)|[−K,K]k + µΘ|V (v, ([−K,K]k)c)δ0(·) . (B.10)

Choose K̄, ϵ′ > 0 such that |τ ′ − τ | < ϵ′ implies∫
[−K̄,K̄]k

1

Z(y, τ ′,v,∞)
e−

1

2τ′2 ∥y−ϑ∥2

µΘ|V (v,dϑ) ≥ 1

2

∫
1

Z(y, τ,v,∞)
e−

1
2τ2 ∥y−ϑ∥2

µΘ|V (v,dϑ) .

Fix ϵ > 0 and K ′ > K > 0 with K ′ possibly equal to infinity. By (B.4), we may choose d∗ such that∫
1

Z(y, τ,v,K)
ℓ(ϑ,d∗)e−

1
2τ2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ) ≤ (1 + ϵ)R(y, τ,v,K,∞) . (B.11)

By the definition of K̄, there exists ϑ∗ ∈ [−K̄, K̄]k such that

ℓ(ϑ∗,d∗) ≤ 2(1 + ϵ)R(y, τ,v,K,∞) .

By (B.3), we conclude that

ℓ(ϑ,d∗) ≤ C
(
1 +

√
2(1 + ϵ)R(y, τ,v,K,∞) +

√
ℓ(ϑ,d∗)

)
∥ϑ− ϑ∗∥ ,

whence
ℓ(ϑ,d∗) ≤

(
1 +

√
2(1 + ϵ)R(y, τ,v,K,∞) + 3C∥ϑ− ϑ∗∥

)2
. (B.12)

1Precisely, for any regular conditional probability distribution µΘ|V for Θ given V , this formula gives a valid version of a
regular conditional probability distribution for Θ(K) given V . We assume we use this version throughout our proof.
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Then ∣∣∣∣∫ ℓ(ϑ,d∗)e−
1

2τ′2 ∥y−ϑ∥2

µΘ(K′)|V (v,dϑ)−
∫
ℓ(ϑ,d∗)e−

1
2τ2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ)

∣∣∣∣
≤
∣∣∣∣∫ ℓ(ϑ,d∗)e−

1

2τ′2 ∥y−ϑ∥2

µΘ(K′)|V (v,dϑ)−
∫
ℓ(ϑ,d∗)e−

1

2τ′2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ)

∣∣∣∣
+

∣∣∣∣∫ ℓ(ϑ,d∗)e−
1

2τ′2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ)−
∫
ℓ(ϑ,d∗)e−

1
2τ2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ)

∣∣∣∣
≤
∫
([−K,K]k)c

ℓ(ϑ,d∗)e−
1

2τ′2 ∥y−ϑ∥2

µΘ|V (v,dϑ) + ℓ(0,d∗)e−
1

2τ′2 ∥y∥2

µΘ|V (v, ([−K,K]k)c)

+

∣∣∣∣∫ ℓ(ϑ,d∗)e−
1

2τ′2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ)−
∫
ℓ(ϑ,d∗)e−

1
2τ2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ)

∣∣∣∣
≤ ξ(K, τ ′)(1 +R(y, τ,v,K,∞)) ,

for some ξ(K, τ ′) → 0 as K → ∞, τ ′ → τ because the conditional measure µΘ|V (v, ·) has finite second
moment and ℓ is bounded by (B.12). Then, by (B.11),

Z(y, τ ′,v,K ′)R(y, τ ′,v,K ′,∞) ≤
∫
ℓ(ϑ,d∗)e−

1
2τ2 ∥y−ϑ∥2

µΘ(K′)|V (v,dϑ)

≤ (1 + ϵ)Z(y, τ,v,K)R(y, τ,v,K,∞) + ξ(K, τ ′)(1 +R(y, τ,v,K,∞)) .

By dominated convergence, we have that Z(y, τ ′,v,K ′)→ Z(y, τ,v,∞) as τ ′ → τ,K ′ →∞. Also, R̄(K) =

max∥ϑ∥∞≤K ℓ(ϑ,0) cannot diverge at finite K. Thus, applying the previous display with K, ϵ fixed allows us
to conclude that R(y, τ,v,K ′,∞) is uniformly bounded over K ′ > K and τ ′ in a neighborhood of τ . Then,
taking K ′ =∞ and K →∞, τ ′ → τ followed by ϵ→ 0 allows us to conclude that

lim
K→∞
τ ′→τ

R(y, τ ′,v,K,∞) = R(y, τ,v,∞,∞) . (B.13)

for every fixed y,v. Moreover,

R(y, τ,v,K,M) = inf
∥d∥∞≤M

∫
1

Z
ℓ(ϑ,d)e−

1
2τ2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ)

≤
∫

1

Z
ℓ(ϑ,0)e−

1
2τ2 ∥y−ϑ∥2

µΘ(K)|V (v,dϑ)

≤
∫

1

Z
C(1 + ∥Θ(K)∥2)e− 1

τ2 (y−ϑ)2µΘ(K)|V (v,dϑ)

= C(1 + E[∥Θ(K)∥2|Θ(K) + τG = y,V = v]) .

Thus, R(Θ(K) + τZ, τ,V ,K,M) is uniformly integrable as we vary τ,K,M . Because the total variation
distance between (Θ(K) + τ ′Z,V ) and (Θ + τZ,V )) goes to 0 as K → ∞ and τ ′ → τ , for any discrete
sequence (K, τ ′) → (∞, τ), there exists a probability space containing variables Ỹ (K,τ ′), Ṽ , Ỹ such that
(Ỹ (K,τ ′), Ṽ ) = (Ỹ , Ṽ ) eventually. Thus, Eq. (B.13) and uniform integrability imply (B.7).
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B.2 Proof for reduction from GFOMs to AMP (Lemma 3.5.1)

In this section, we prove Lemma 3.5.1.

B.2.1 A general change of variables

For any GFOM (3.1), there is a collection of GFOMs to which it is, up to a change of variabes, equivalent.
In this section, we specify these GFOMs and the corresponding changes of variables.

The change of variables is determined by a collection of r × r matrices (ξt,s)t≥1,1≤s≤t, (ζt,s)t≥1,0≤s<t.
We will often omit subscripts outside of the parentheses. Define recursively the functions (ft)t≥0, (ϕt)t≥1

ft(b
1, . . . , bt; y,u) = F

(1)
t (ϕ1(b

1; y,u), . . . , ϕt(b
1, . . . , bt; y,u); y,u)

ϕt(b
1, . . . , bt; y,u) = bt +

t−1∑
s=0

fs(b
1, . . . , bs; y,u)ζT

t,s

+G
(2)
t (ϕ1(b

1; y,u), . . . , ϕt−1(b
1, . . . , bt−1; y,u); y,u),

(B.14a)

initialized by f0(y,u) = F
(1)
0 (y,u) (here bs,u ∈ Rr), and define recursively the functions (gt)t≥1, (φt)t≥1

φt+1(a
1, . . . ,at+1;v) = at+1 +

t∑
s=1

gs(a
1, . . . ,at+1;v)ξTt,s

+ F
(2)
t (ϕ1(a

1;v), . . . , ϕt(a
1, . . . ,at;v);v),

gt(a
1, . . . ,at;v) = G

(1)
t (φ1(a

1;v), . . . , φt(a
1, . . . ,at;v);v),

(B.14b)

initialized by φ1(a
1;v) = a1 + F

(2)
0 (v) (here as,v ∈ Rr). Algebraic manipulation verifies that the iteration

at+1 = XTft(b
1, . . . , bt; y,u)−

t∑
s=1

gs(a
1, . . . ,as;v)ξTt,s,

bt = Xgt(a
1, . . . ,at;v)−

t−1∑
s=0

fs(b
1, . . . , bs; y,u)ζT

t,s

(B.15)

initialized by a1 = XTf0(y,u) generates sequences (at)t≥1, (bt)t≥1 which satisfy

vt = φt(a
1, . . . ,at;v), t ≥ 1,

ut = ϕt(b
1, . . . , bt; y,u), t ≥ 1.

Thus, (ξt,s), (ζt,s) index a collection of GFOMs which, up to a change of variables, are equivalent.

B.2.2 Approximate message passing and state evolution

We call the iteration (B.15) an approximate message passing algorithm if the matrices (ξt,s), (ζt,s) satisfy
a certain model-specific recursion involving the functions ft, gt. The state evolution characterization of the
iterates (see Eq. (3.17)) holds whenever the matrices ξt,s, ζt,s satisfy this recursion. In this section, we
specify this recursion and the parameters (αs), (T s,s′) in both the high-dimensional regression and low-rank
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matrix estimation models.

High-dimensional regression AMP

In the high-dimensional regression model, r = 1 and ξt,s, ζt,s, αt, and Ts,s′ will be scalars (hence, written
with non-bold font). The recursion defining ξt,s, ζt,s also defines (αt), Ts,s′ as well as a collection of scalars
(Σs,t)s,t≥0 which did not appear in the statement of Lemma 3.5.1. The recursion, whose lines are implemented
in the order in which they appear, is

ξt,s = E[∂Bsft(B
1, . . . , Bt;h(B0,W ), U)], 1 ≤ s ≤ t,

αt+1 = E[∂B0ft(B
1, . . . , Bt;h(B0,W ), U)],

Ts+1,t+1 = E[fs(B1, . . . , Bs;h(B0,W ), U)ft(B
1, . . . , Bt;h(B0,W ), U)], 0 ≤ s ≤ t,

ζt,s =
1

δ
E[∂Zs+1gt(α1Θ+ Z1, . . . , αtΘ+ Zt;V )], 0 ≤ s ≤ t− 1,

Σ0,t =
1

δ
E[Θgt(α1Θ+ Z1, . . . , αtΘ+ Zt;V )],

Σs,t =
1

δ
E[gs(α1Θ+ Z1, . . . , αtΘ+ Zs;V )gt(α1Θ+ Z1, . . . , αtΘ+ Zt;V )], 1 ≤ s ≤ t,

(B.16)

where Θ ∼ µΘ, U ∼ µU , V ∼ µV , W ∼ µW , (B0, . . . , Bt) ∼ N(0,Σ[0:t]), (Z1, . . . , Zt) ∼ N(0,T [1:t]), all
independent. We initialize just before the second line with Σ0,0 = E[Θ2].

Eq. (3.17) for (αs), (Ts,s′) defined in this way is a special case of Proposition 5 of [104], as we now
explain. We fix iteration t design an algorithm that agrees, after a change of variables, with iteration (3.16)
up to iteration t and to which we can apply the results of [104]. Because we take n, p → ∞ before t → ∞,
this establishes the result.

We view the first t iterations of (3.16) as acting on matrices ãs ∈ Rp×(t+1) and b̃s ∈ Rn×(t+1) as follows.
Define ãs to be the matrix whose first column is θ and whose ith column is ai−1 for 2 ≤ i ≤ s + 1 and
is 0 for i > s + 1; define b̃s to be the matrix whose first column is Xθ and whose ith column is bi=1 for
2 ≤ i ≤ s+ 1 and is 0 for i > s+ 1. The following change of variables transforms (3.16) into equations (28)
and (29) of Proposition 5 in [104]. Our notation is on the right and is separated from the notation of [104]
by the symbol “←”.

Ã← X,

us(i)←


Xθ i = 1,

bi−1 2 ≤ i ≤ s+ 1,

0 otherwise,

and vs(i)←

ai−1 − αi−1θ 2 ≤ i ≤ s+ 1,

0 otherwise,

y(i)←


v i = 1,

θ i = 2,

0 otherwise,

and w(i)←


u i = 1,

w i = 2,

0 otherwise,
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ê(v, y; s)(i)←


y(2) i = 1,

gi−1(v(2) + α1y(2), . . . , v(i+ 1) + αiy(2); y(1)) 2 ≤ i ≤ s+ 1,

0 otherwise,

ĥ(u,w; s)(i)←

fi−1(u(2), . . . , u(i+ 1);h(u(1), w(2)), w(1)), 1 ≤ i ≤ s+ 1,

0 otherwise,

where the “(i)” notation indexes columns of a matrix. The Onsager correction coefficients (ξt,s) and (ζt,s)

correspond, after a change of variables, to entries in the matrices Ds and Bs in [104].

(Ds)i,j = E[∂u(j)ĥ(U,W ; s)]←

E[∂Bj−1fi−1(B
1, . . . , Bi;h(B0,W ), U)] 1 ≤ j − 1 ≤ i ≤ s+ 1,

0 otherwise,
,

(Bs)i,j =
1

δ
E[∂v(j)ê(V, Y ; i)]←


0 i = 1 or j = 1,

1
δE[∂Zj−1gi(α1Θ+ Z1, . . . , αiΘ+ Zi;V )] 2 ≤ j ≤ i+ 1 ≤ s+ 2,

0 otherwise.

The Onsager coefficients and state evolution coefficients are arrived at through the change of variables:

(Bs)s+1,s′+2 ← ζs,s′ , (Ds)s+1,s′+1 ← ξs,s′ (Ds)s+1,1 ← αs.

We remark that in [104] the quantities (Bs)s+1,s′+2, (Ds)s+1,s′+1, and (Ds)s+1,1 are empirical averages.
Because they concentration well on their population averages, we may replace them with their population
averages, as we do here, without affecting the validity of state evolution. This observation is common in the
AMP literature: see, for example, the relationship between Theorem 1 and Corollary 2 of [32]. The state
evolution matrices now correspond to

E[V s+1(s+ 1)V s+1(s′ + 1)] = E[ĥ(U,W ; s)(s)ĥ(U,W ; s)(s′)]

← E[fs−1(B
1, . . . , Bs−1;h(B0,W ), U)fs′−1(B

1, . . . , Bs
′−1;h(B0,W ), U)]

= Ts,s′ ,

E[Us+1(s+ 1)Us+1(s′ + 1)] =
1

δ
E[ê(V, Y ; s+ 1)(s+ 1)ê(V, Y ; s+ 1)(s′ + 1)]

← 1

δ
E[gs(α1Θ+ Z1, . . . , αsΘ+ Zs;V )gs′(α1Θ+ Z1, . . . , αs′Θ+ Zs

′
;V )]

= Σs,s′ .

From these changes of variables, Eq. (3.17) holds in the high-dimensional regression model from Theorem 1
and Proposition 5 of [104].

Low-rank matrix estimation AMP

In the low-ank matrix estimation model, the recrusion defining (xt,x), (ζt,s) also defines (αt), (T s,t)s,t≥1 as
well as collections of r×r matrices (γt)t≥1, (Σs,t)s,t≥0 which did not appear in Lemma 3.5.1. The recursion,
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whose lines are implemented in the order in which they appear, is

ξt,s = E[∇Z̃sft(γ1Λ+ Z̃1, . . . ,γtΛ+ Z̃t; 0,U)], 1 ≤ s ≤ t,
αt+1 = E[ft(γ1Λ+ Z̃1, . . . ,γtΛ+ Z̃t; 0,U)ΛT],

T s+1,t+1 = E[fs(γ1Λ+ Z̃1, . . . ,γtΛ+ Z̃s; 0,U)ft(γ1Λ+ Z̃1, . . . ,γtΛ+ Z̃t; 0,U)T], s ≤ t,

ζt,s =
1

δ
E[∇Zs+1gt(α1Θ+ Z1, . . . ,αtΘ+Zt;V )], 0 ≤ s ≤ t− 1,

γt =
1

δ
E[gt(α1Θ+Z1, . . . ,αtΘ+Zt;V )ΘT],

Σs,t =
1

δ
E[gs(α1Θ+Z1, . . . ,αtΘ+Zs;V )gt(α1Θ+Z1, . . . ,αtΘ+Zt;V )T], 1 ≤ s ≤ t,

(B.17)

where Λ ∼ µΛ U ∼ µU , Θ ∼ µΘ, V ∼ µV , (Z̃1, . . . , Z̃t) ∼ N(0,Σ[1:t]), and (Z1, . . . ,Zt) ∼ N(0,T [1:t]), all
independent. Here ∇ denotes the Jacobian with respect to subscripted (vectorial) argument, which exists
almost everywhere because the functions involved are Lipschitz and the random variables have density with
respect to Lebesgue measure [83, pg. 81]. As with T [1:t], we define Σ[1:t] to be the rt× rt block matrix with
block (s, t) given by Σs,t. We initialize at the second line with α1 = E[f0(0,U)ΛT]. In addition to (3.17),
we have

1

n

n∑
i=1

ψ(b1i , . . . , b
t
i,ui,Λi)

p→ E[ψ(γ1Λ+ Z̃1, . . . ,γtΛ+ Z̃t,U ,Λ)],

where we remind the reader that ψ : Rr(t+2) → R is any pseudo-Lipschitz function of order 2.
We now show Eq. (3.17) for (αs), (Ts,s′) defined in this way. We consider the r = 1 case, as r > 1 is

similar by requires more notational overhead. Because X = 1
nΛθT +Z, we have

at+1 − 1

n
⟨Λ, ft(b1, . . . , bt, 0,u)⟩θ = ZTft(b

1, . . . , bt, 0,u)−
t∑

s=1

ξt,sgs(a
1, . . . ,as,v),

bt − 1

n
⟨θ, gt(a1, . . . ,at,v)⟩Λ = Zgt(a

1, . . . ,at,v)−
t−1∑
s=0

ζt,sfs(b
1, . . . , bs,y,u).

We introduce a change of variables:

f̂t(d
1, . . . , dt, u, λ)

∆
= ft(d

1 + γ1λ, . . . , d
t + γtλ, 0, u), dt = bt − γtΛ ∈ Rn,

ĝt(c
1, . . . , ct, v, θ)

∆
= gt(c

1 + α1θ, . . . , c
t + αtθ, v), ct = at − αtθ ∈ Rp.

Because ft, gt are Lipschitz continuous, so too are f̂t, ĝt. We have

at+1 − 1

n
⟨Λ, f̂t(d1, . . . ,dt,u,Λ)⟩θ = ZTf̂t(d

1, . . . ,dt,u,Λ)−
t∑

s=1

ξt,sĝs(c
1, . . . , cs,v,θ),

bt − 1

n
⟨θ, ĝt(c1, . . . , ct,v,θ)⟩Λ = Zĝt(c

1, . . . , ct,v,θ)−
t−1∑
s=0

ζt,sf̂s(b
1, . . . , bs,u,Λ).
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Define

ĉt+1 = ZTf̂t(d̂
1, . . . , d̂t,u,Λ)−

t∑
s=1

ξt,sĝs(ĉ
1, . . . , ĉt,v,θ),

d̂t = Zĝt(ĉ
1, . . . , ĉt,v,θ)−

t−1∑
s=0

ζt,sf̂s(d̂
1, . . . , d̂t,u,Λ).

We can analzye this iteration via the same techniques we used to analyze AMP in the high-dimensional
regression model in the previous section [104]. In particular, for any pseudo-Lipschitz function ψ : Rt+2 → R
of order 2, we have

1

p

p∑
j=1

ψ(ĉ1j , . . . , ĉ
t
j , vj , θj)

p→ E[ψ(Z1, . . . , Zt, V,Θ)],

1

n

n∑
i=1

ψ(d̂1i , . . . , d̂
t
i, ui, λi)

p→ E[ψ(Z̃1, . . . , Z̃t, U,Λ)].

(B.18)

Now, tøestablish (3.17), it suffices to show

1

n
∥ĉt − ct∥22

p→ 0,
1

n
∥d̂t − dt∥22

p→ 0. (B.19)

We proceed by induction. By the weak law of large numbers, we have that 1
n ⟨Λ, f̂0(Λ,u)⟩ = 1

n ⟨Λ, f0(0,u)⟩
p→

α1. Therefore, c1 = ZTf̂0(Λ,u)+op(1)θ = ĉ1+op(1)θ. Since 1
p∥θ∥22

p→ E[Θ2], we have that 1
n∥c1−ĉ1∥22

p→ 0.
Because ĝ1 is Lipschitz and 1

p∥θ∥2 = Op(1), we have | 1n ⟨θ, ĝ1(c1,θ,v)⟩ − 1
n ⟨θ, ĝ1(ĉ1,θ,v)⟩|

p→ 0. By
(B.18), we have that 1

n ⟨θ, ĝ1(ĉ1,θ,v)⟩
p→ γ1. We have

1

n
∥ĝ1(c1,v,θ)− ĝ1(ĉ1,v,θ)∥22 ≤

1

n
L2∥c1 − ĉ1∥22

p→ 0,

wehre L is a Lipschitz constant for ĝ1. By [12], the maximal singular value of ZTZ is Op(1). Therefore,
1
n∥Zĝ1(c1,v,θ) − Zĝ1(ĉ

1,v,θ)∥22
p→ 0. As a result, and using that 1

n∥Λ∥22 converges almost surely to a
constant,

1

n
∥d̂1 − d1∥22 =

1

n
∥Zĝt(ĉ1,v,θ)−Zĝt(c

1,v,θ) + (
1

n
⟨θ, ĝ1(c1,θ,v)⟩ − γ1)Λ∥22

p→ 0.

Now assume that (B.19) holds for 1, 2, . . . , t. For the (t+ 1)-th iteration, we have

| 1
n
⟨Λ, f̂t(d1, . . . ,dt,u,Λ)⟩ − 1

n
⟨Λ, f̂t(d̂1, . . . , d̂t,u,Λ)⟩| ≤ L

n
∥Λ∥2

t∑
s=1

∥ds − d̂s∥2 p→ 0.

where L is a Lipschitz constant for f̂ . By (B.18), we have 1
n ⟨Λ, f̂t(d̂

1, . . . , d̂t,Λ,u)⟩ p→ αt+1. As a result, we
have 1

n ⟨Λ, f̂t(d
1, . . . ,dt,u,Λ)⟩ p→ αt+1. Furthermore, for any 1 ≤ s ≤ t, we have

1

n
∥f̂s(d1, . . . ,ds,u,Λ)− f̂s(d̂1, . . . , d̂s,u,Λ)∥22 ≤

L̂2
t

n

s∑
i=1

∥di − d̂i∥22
p→ 0,

1

n
∥ĝs(c1, . . . , cs,v,θ)− ĝs(ĉ1, . . . , ĉs,v,θ)∥22 ≤

L̂2
t

n

s∑
i=1

∥ci − ĉi∥22
p→ 0.
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Again using that the maximal singular value of ZTZ is Op(1), we have

1

n
∥ZTf̂t(d̂

1, . . . , d̂t,u,Λ)−ZTf̂t(d
1, . . . ,dt,u,Λ)∥22

p→ 0 .

As a result, we have

1

n
∥ĉt+1 − ct+1∥22

=
1

n
∥( 1
n
⟨Λ, f̂t(d1, . . . ,dt,u,Λ)− αt+1)θ +ZT(f̂t(d̂

1, . . . , d̂t,u,Λ)− f̂t(d1, . . . ,dt,u,Λ))−
t∑

s=1

ξt,s(ĝs(ĉ
1, . . . , ĉs,v,θ)− ĝs(c1, . . . , cs,θ,v))∥22

p→ 0.

Similarly, we have

| 1
n
⟨θ, ĝt+1(ĉ

1, . . . , ĉt+1,v,θ)⟩ − 1

n
⟨θ, ĝt+1(c

1, . . . , ct+1,v,θ)⟩| ≤ L

n
∥θ∥2

t+1∑
s=1

∥ĉt+1 − ct+1∥2 p→ 0,

where L is a Lipschitz constant for ĝt+1. By (B.18), we have that 1
n ⟨θ, ĝt+1(ĉ

1, . . . , ĉt+1,v,θ)⟩ p→ γt+1. As
a result, we have that 1

n ⟨θ, ĝt+1(c
1, . . . , ct+1,v,θ)⟩ p→ γt+1. Furthermore, for any 1 ≤ s ≤ t, we have

1

n
∥f̂s(d1, . . . ,ds,u,Λ)− f̂s(d̂1, . . . , d̂s,u,Λ)∥22 ≤

L2

n

s∑
i=1

∥di − d̂i∥22
p→ 0.

Also, for any 1 ≤ s ≤ t+ 1, we have

1

n
∥ĝs(c1, . . . , cs,v,θ)− ĝs(ĉ1, . . . , ĉs,v,θ)∥22 ≤

L2

n

s∑
i=1

∥ci − ĉi∥22
p→ 0.

Then 1
n∥Zĝt+1(ĉ

1, . . . , ĉt+1,v,θ)−Zĝt+1(c
1, . . . , ct+1,v,θ)∥22

p→ 0. As a result, we have

1

n
∥d̂t+1 − dt+1∥22

=
1

n
∥( 1
n
⟨θ, ĝt+1(c

1, . . . , ct+1,v,θ)⟩ − γt+1)Λ

+Z(ĝt+1(ĉ
1, . . . , ĉt+1,v,θ)− ĝt+1(c

1, . . . , ct+1,v,θ))

−
t∑

s=0

ζt,s(f̂s(d̂
1, . . . , d̂s,u,Λ)− f̂s(d1, . . . ,ds,u,Λ))∥22

p→ 0.

Thus, we have proved (B.19). Therefore, for all pseudo-Lipschitz function ψ of order 2, we have that there
exists a numerical constant C such that∣∣∣∣∣∣1p

p∑
j=1

ψ(c1j + α1θj , . . . , c
t
j + αtθj , vj , θj)−

1

p

p∑
j=1

ψ(ĉ1j + α1θj , . . . , ĉ
t
j + αtθj , vj , θj)

∣∣∣∣∣∣
≤ Lψ(1 +

t∑
s=1

∥as∥2 + ∥θ∥2 + ∥v∥2)
t∑

s=1

∥ĉs − cs∥2 p→ 0.
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By (B.18),

1

p

p∑
j=1

ψ(ĉ1j + α1θj , . . . , ĉ
t
j + αtθj , vj , θj)

p→ E[ψ(α1Θ+Z1, . . . ,αtΘ+Zt,V ,Θ)].

Therefore, 1
p

p∑
j=1

ψ(a1j , . . . , a
t
j , vj , θj)

p→ E[ψ(α1Θ + Z1, . . . ,αtΘ + Zt,V ,Θ)]. Similarly, we can show that

1
n

∑n
i=1 ψ(b

1
i , . . . , b

t
i,ui,Λi)

p→ E[ψ(γ1Λ+ Z̃1, . . . ,γtΛ+ Z̃t,U ,Λ)]. Thus we have finished the proof.

B.2.3 The AMP change of variables

To prove Lemma 3.5.1, all that remains is to show that for any GFOM (3.1), at least one of the change-of-
variables in Eqs. (B.14) generates an iteration (B.15) which is an AMP iteration. That is, in addition to
satisfying Eq. (B.14), the matrices (ξt,s), (ζt,s) and functions (ft), (gt) satisfy Eqs. (B.16) and (B.17) in the
high-dimensional regression and low-rank matrix estimation models respectively.

To construct such a choice of scalars, we may define (ξt,s), (ζt,s), (ft), (gt) in a single recursion by
interlacing definition (B.14) with either (B.16) or (B.17). Specifically, in the high-dimensional regression
model, we place (B.14a) before the first line of (B.16) and (B.14b) before the fourth line of (B.16). In
the combined recursion, all quantities are defined in terms of previously defined quantities, yielding choices
for (ξt,s), (ζt,s), (ft), (gt) which simultaneously satisfy (B.14) and (B.16). Thus, in the high-dimensional
regression model every GFOM is equivalent, up to a change of variables, to a certain AMP algorithm. The
construction in the low-rank matrix estimation model is analogous: we place (B.14a) before the first line of
(B.17) and (B.14b) before the fourth line of (B.17).

The proof of Lemma 3.5.1 is complete.

B.3 Proof of state evolution for message passing (Lemma 3.5.2)

In this section, we prove Lemma 3.5.2. We restrict ourselves to the case r = 1 and k = 1 (with k the
dimensionality of W ) because the proof for r > 1 or k > 1 is completely analogous but would complicate
notation.

Let Tv→f = (Vv→f ,Fv→f , Ev→f ) be the tree consisting of edges and nodes in T which are separated
from f by v. By convention, Tv→f will also contain the node v. In particular, f ̸∈ Fv→f and (f, v) ̸∈ Ev→f ,
but v ∈ Vv→f , and f ′ ∈ Fv→f and (v, f ′) ∈ Ev→f for f ′ ∈ ∂v \ f . We define Tf→v,Vf→v,Ff→v, Ef→v

similarly. With some abuse of notation, we will sometimes use Tf→v,Vf→v,Ff→v, Ef→v to denote either the
collection of observations corresponding to nodes and edges in these sets or the σ-algebra generated by these
obervations. No confusion should result. Which random variables we consider to be “observed” will vary
with the model, and will be explicitly described in each part of the proof to avoid potential ambiguity.
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B.3.1 Gaussian message passing

We first introduce a message passing algorithm whose behavior is particularly easy to analyze. We call
this message passing algorithm a Gaussian message passing algorithm. We will see that in both the high-
dimensional regression and low-rank matrix estimation models, the message passing algorithm (3.19) ap-
proximates a certain Gaussian message passing algorithm.

Gaussian message passing algorithms operate on a computation tree with associated random vari-
ables {(θv, vv)}v∈V

iid∼ µΘ,V , {(wf , uf )}f∈F
iid∼ µW,U , and {zfv}(f,v)∈E

iid∼ N(0, 1/n), all independent, where
µΘ,V , µW,U ∈ P4(R2).2 Gaussian message passing algorithms access all these random variables, so that all
are considered to be “observed.” Thus, for example, Vf→v contains θv′ , vv′ for all nodes v′ separated from f

by v (including, by convention, v).
Gaussian message passing algorithms are defined by sequences of Lipschitz functions (f̃t : Rt+3 → R)t≥0,

(g̃t : Rt+2 → R)t≥0. We initialize the indexing differently than with Gaussian message passing algorithms
than with the message passing algorithms in Section 3.5 in anticipation of notational simplifications that
will occur later. For every pair of neighboring nodes v, f , we generate sequences of messages (ãtv→f )t≥1,
(q̃tv→f )t≥0, (b̃tf→v)t≥0, (r̃tf→v)t≥0 according to the iteration

ãt+1
v→f =

∑
f ′∈∂v\f

zf ′v r̃
t
f ′→v, r̃tf→v = f̃t(b̃

0
f→v, . . . , b̃

t
f→v;wf , uf ), (B.20a)

b̃tf→v =
∑

v′∈∂f\v

zfv′ q̃
t
v′→f , q̃tv→f = g̃t(ã

1
v→f , . . . , ã

t
v→f ; θv, vv), (B.20b)

with initialization q̃0v→f = g0(θv, vv). For t ≥ 0, define the node beliefs

ãt+1
v =

∑
f∈∂v

zfv r̃
t
f→v, b̃tf =

∑
v∈∂f

zfv q̃
t
v→f . (B.21)

To compactify notation, denote ãtv = (ã1v, . . . , ã
t
v)

T, and likewise for ãtv→f , q̃
t
v→f , b̃

t
f , b̃

t
f→v, r̃

t
f→v (where

the first two of these are t-dimensional, and the last three are (t + 1)-dimensional). We will often write
f̃t(b̃

t
f→v;wf , uf ) in place of f̃t(b̃0f→v, . . . , b

t
f→v;wf , uf ), and similarly for g̃t. The reader should not confuse

the bold font here with that in Section 3.5, in which, for example, atv→f denotes the vectorial message at
time t rather than the collection of scalar messages prior to and including time t.

Gaussian message passing obeys a Gaussian state evolution, defined by covariance matrices

Σs,s′ = E[g̃s(Ãs; Θ, V )g̃s′(Ã
s′ ; Θ, V )], Ts+1,s′+1 = E[f̃s(B̃s;W,U)f̃s′(B̃

s′ ;W,U)], (B.22)

where s, s′ ≥ 0, Ãs ∼ N(0s,T [1:s]), B̃s ∼ N(0s+1,Σ[0:s]), and (Θ, V ) ∼ µΘ,V , (W,U) ∼ µW,U independent
of Ãs, B̃s. The iteration is initialized by Σ0,0 = E[g̃0(Θ, V )2].

Lemma B.3.1. If we choose a variable node v and factor node f independently of the randomness in our
model, then for fixed t and for n, p→∞, n/p→ δ we have

(ãtv, θv, vv)
W→ N(0t,T [1:t])⊗ µΘ,V and (ãtv→f , θv, vv)

W→ N(0t,T [1:t])⊗ µΘ,V , (B.23a)

2We believe that only µΘ,V , µW,U ∈ P2(R2) is needed, but the analysis under this weaker assumption would be substantially
more complicated, and the weaker assumptions are not necessary for our purposes.
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(b̃tf , wf , uf )
W→ N(0t+1,Σ[0:t])⊗ µW,U and (b̃tf→v, wf , uf )

W→ N(0t+1,Σ[0:t])⊗ µW,U . (B.23b)

Further, all the random variables in the preceding displays have bounded fourth moments and E[∥ãtv −
ãtv→f∥2]→ 0 and E[∥b̃tf − b̃tf→v∥2]→ 0.

The analysis of message passing on the tree is facilitated by the many independence relationships between
messages, which follow from the following lemma.

Lemma B.3.2. For all (f, v) ∈ E and all t, the messages r̃tf→v, b̃
t
f→v are Tf→v-measurable, and the messages

q̃tv→f , ã
t
a→f is Tv→f -measurable.

Proof.[Lemma B.3.2] The proof is by induction. The base case is that q̃0v→f = g0(θv, vv) is Tv→f -measurable.
Then, if q̃sv→f are Tv→f -measurable and b̃sf→v are Tf→v-measurable for 0 ≤ s ≤ t and all (f, v) ∈ E , then
b̃tf→v, r̃

t
f→v are Tf→v-measurable by (B.20). Similarly, if r̃sf→v are Tf→v-measurable and ãsv→f are Tv→r-

measurable for 0 ≤ s ≤ t and all (f, v) ∈ E , then ãt+1
f→v, r̃

t+1
f→v are Tv→f -measurable by (B.20). The induction

is complete.

We now prove Lemma B.3.1.
Proof.[Lemma B.3.1] The proof is by induction.
Base case: (θv, vf )

W→ µΘ,V .
This is the exact distribution in finite samples by assumption.

Inductive step 1: Eq. (B.23a) at t, bounded fourth moments of ãtv, ãtv→f , and E[∥ãtv − ãtv→f∥2] → 0 imply
Eq. (B.23b) at t, bounded fourth moments of b̃tf , b̃

t
f→v, and E[∥b̃tf − b̃tf→v∥2]→ 0.

The σ-algebras (Tv→f )v∈∂f are independent of (zfv)v∈∂f , which are mutually independent of each
other. Thus, by (B.21), conditional on σ((Tv→f )v∈∂f ) the beliefs b̃tf are jointly normal with covariance
Σ̂[0:t] :=

1
n

∑
v∈∂f q̃

t
v→f (q̃

t
v→f )

T. That is,

b̃tf
∣∣ σ((Tv→f )v∈∂f ) ∼ N(0t+1, Σ̂[0:t]).

Because (ãtv→f , θv, vv) 7→ g̃s(ã
s
v→f ; θv, vv)g̃s′(ã

s′

v→f ; θv, vv) is uniformly pseudo-Lipschitz of order 2 by Lemma
B.1.1, we have E[Σ̂s,s′ ] = E[q̃sv→f q̃

s′

v→f ] = E[g̃s(ãsv→f ; θv, vv)g̃s′(ã
s′

v→f ; θv, vv)] → Σs,s′ by the inductive hy-
pothesis, Lemma B.1.2, and (B.22). The terms in the sum defining Σ̂[0:t] are mutually independent by
Lemma B.3.2 and have bounded second moments by the inductive hypothesis and the Lipschitz continuity
of the functions (g̃s)0≤s≤t. By the weak law of large numbers, Σ̂[0:t]

L1→ Σ[0:t], whence by Slutsky’s theorem,
b̃tf

d→ N(0t+1,Σ[0:t]). Further, E[b̃tf (b̃
t
f )

T] = E[Σ̂[0:t]] → Σ[0:t]. Convergence in distribution and in second
moment implies convergence in the Wasserstein space of order 2 [193, Theorem 6.9], so b̃tf

W→ N(0t+1,Σ[0:t]).
To bound the fourth moments of b̃tf , we compute

E[(b̃tf )4] = E[Σ̂2
t,t] =

1

n2

∑
v∈∂f

E[(q̃tv→f )
4] +

1

n2

∑
v ̸=v′∈∂f

E[(q̃tv→f )
2]E[(q̃tv′→f )

2]→ Σt,t,

where the first term goes to 0 because the fourth moments of q̃tv→f are bounded by the inductive hypothesis
and Lipschitz continuity of g̃t, and the second term goes to E[(q̃tv→f )

2] by the same argument in the preceding
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paragraph. The boundedness of the fourth moments of b̃sf holds similarly (and, anyway, will have been
established earlier in the induction).

Finally, observe b̃tf − b̃tf→v = zfv q̃
t
v→f and E[(zfv q̃tv→f )

2] = E[q̃tv→f )
2]/n → 0, where E[q̃tv→f )

2] is
bounded by the inductive hypothesis and Lipschitz continuity of g̃t. The convergence E[(b̃tf − b̃sf→v)

2] → 0

for s < t holds similarly (and, anyway, will have been established earlier in the induction). The Wasserstein
convergence of (b̃tv→f , θv, vv) now follows. The bounded fourth moments of b̃tv→f hold similarly.

Inductive step 2: Eq. (B.23) at t, bounded fourth moments of b̃tf , b̃
t
f→v, and E[∥b̃tf − b̃tf→v∥2] → 0 imply

Eq. (B.23) at t+ 1, bounded fourth moments of ãtv, ã
t+1
v→f , and E[∥ãt+1

v − ãt+1
v→f∥2]→ 0.

This follows by exactly the same argument as in inductive step 1.
The induction is complete, and Lemma B.3.1 follows.

B.3.2 Message passing in the high-dimensional regression model

We prove Lemma 3.5.2 for the high-dimensional regression model by showing that the iteration (3.19) is well
approximated by a Gaussian message passing algorithm after a change of variables. The functions f̃t, g̃t in
the Gaussian message passing algorithm are defined in terms of the functions ft, gt of the original message
passing algorithm (3.19) and the function h used to define the high-dimensional regression model.

f̃t(b̃
0, · · · , b̃t, w, u) := ft(b̃

1, · · · , b̃t;h(b̃0, w), u), t ≥ 0,

g̃0(θ, v) = θ, g̃t(ã
1, · · · , ãt; θ, v) := gt(α1θ + ã1, · · · , α1θ + ãt; v), t ≥ 1.

Define (ãtv→f )t≥1, (ãtv)t≥1, (q̃tv→f )t≥0, (b̃tf→v)t≥0, (b̃tf )t≥0, (r̃tf→v)t≥0 via the Gaussian message passing algo-
rithm (B.20) with initial data θv, vv, wf , uf and with zfv = xfv. Because ft, gt, and h are Lipschitz, so too
are f̃t and g̃t. Under the function definitions f̃t, g̃t given above, the definitions of Σs,s and Ts,s′ in (B.22) and
(B.16) are equivalent. Thus, Lemma B.3.1 holds for the iterates of this Gaussian message passing algorithm
with the T [1:t], Σ[0:t] defined by (B.16).

We claim that for fixed s ≥ 1, as n→∞ we have

E[(αsθv + ãsv→f − asv→f )
2]→ 0 and E[(b̃sf→v − bsf→v)

2]→ 0, (B.24a)

and
E[(asv→f )

4] and E[(bsf→v)
4] are uniformly bounded with respect to n, (B.24b)

where (αs) are defined by (B.16). These are the same coefficients appearing in the AMP state evolution
(Lemma 3.5.1), as claimed. We show (B.24) by induction. There is no base case because the inductive steps
work for t = 0 as written.

Inductive step 1: If (B.24) holds for 1 ≤ s ≤ t, then (B.24a) holds for s = t+ 1.
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We expand

αt+1θv + ãt+1
v→f − at+1

v→f = αt+1θv +
∑

f ′∈∂v\f

zf ′v(f̃t(b̃
t
f ′→v;wf ′ , uf ′)− ft(btf ′→v; yf ′ , uf ′))

= αt+1θv +
∑

f ′∈∂v\f

zf ′v(f̃t(b̃
t
f ′→v;wf ′ , uf ′)− f̃t(b̃0f ′→v, b

t
f ′→v;wf ′ , uf ′))

+
∑

f ′∈∂v\f

zf ′v(f̃t(b̃
0
f ′→v, b

t
f ′→v;wf ′ , uf ′)− f̃t(b̃0f ′ , btf ′→v;wf ′ , uf ′))

=: αt+1θv + I+ II.

(Note that b̃tf ′→v is (t+ 1)-dimensional and btf ′→v is t-dimensional). First we analyze I. We have

|f̃t(b̃tf ′→v;wf ′ , uf ′)− f̃t(b̃0f ′→v, b
t
f ′→v;wf ′ , uf ′)| ≤ L

t∑
s=1

|b̃sf ′→v − bsf ′→v|,

where L is a Lipschitz constant of f̃t. The terms in the sum defining I are mutually independent, and
b̃sf ′→v, b

s
f ′→v are independent of zf ′v. Thus,

E[I2] =
n− 1

n
E[(f̃t(b̃tf ′→v;wf ′ , uf ′)− f̃t(b̃0f ′→v, b

t
f ′→v;wf ′ , uf ′))2]

≤ L2(n− 1)t

n

t∑
s=1

E[(b̃sf ′→v − bsf ′→v)
2]→ 0,

by the inductive hypothesis.
Next we analyze II. Note that all arguments to the functions in the sum defining II are independent of

zf ′v and θv except for b̃0f ′ = zf ′vθv+
∑
v′∈∂f ′\v zf ′v′θv′ . Because f̃t is Lipschitz, we may apply Stein’s lemma

(ie., Gaussian integration by parts) [184] to get

E[αt+1θv + II
∣∣ θv, σ((Tv′′→f ′)v′′∈∂f ′\v)]

= αt+1θv + (n− 1)E
[
zf ′v(f̃t(b̃

0
f ′→v, b

t
f ′→v;wf ′ , uf ′)− f̃t(b̃0f ′ , btf ′→v;wf ′ , uf ′))

∣∣ θv]
= θv

(
αt+1 −

n− 1

n
E[∂b̃0 f̃t(b̃

0
f ′ , btf ′→v;wf ′ , uf ′)

∣∣ θv]) ,
where ∂b̃0 f̃t is the weak-derivative of f̃t with respect to its first argument, which is defined almost everywhere
with respect to Lebesgue measure because f̃t is Lipschitz [83, pg. 81].

We claim the right-hand side of the preceding display converges in L2 to 0, as we now show. The random
variable E[∂b̃0 f̃t(b̃

0
f ′ , b

t
f ′→v;wf ′ , uf ′)|θv, (Tv′′→f ′)v′′∈∂f ′\v] is almost-surely bounded because f̃t is Lipschitz.

It converges in probability to αt+1. The random vector (b̃0f ′ , b
t
f ′→v) has a Gaussian distribution conditional

on σ((Tv′′→f ′)v′′∈∂f ′\v) and θv; in particular,

(b̃0f ′→v + zf ′vθv, b
t
f ′→v)|θv, σ((Tv′′→f ′)v′′∈∂f ′\v)

d
= N(0, Σ̂),
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where we define Σ̂ ∈ R(t+1)×(t+1) by

Σ̂0,0 =
1

n

∑
v′∈∂f ′

θ2v′ and Σ̂s,s′ =
1

n

∑
v′∈∂f ′\v

qsv′→f ′qs
′

v′→f ′ for s ≥ 1 or s′ ≥ 1,

where for the purposes of the preceding display we set q0v′→f ′ = θv′ . By the Lipschitz continuity of the
functions (gs), Lemmas B.1.1 and B.1.2, and the inductive hypothesis, we have E[Σ̂]→ Σ[0:t]. The terms in
the sums in the previous display have bounded second moments by the inductive hypthesis (B.24b) and the
Lipschitz continuity of the functions (gs). By the weak law of large numbers, we conclude Σ̂

p→ Σ[0:t+1].

Observe that E[∂b̃0 f̃t(b̃
0
f ′ , b

t
f ′→v;wf ′ , uf ′)|θv, (Tv′′→f ′)v′′∈∂f ′\v] = E[∂b̃0 f̃t(Σ̂

1/2
Z;W,U)], where on the

right-hand side the expectation is with respect to (W,U) ∼ µW,U and Z ∼ N(0t+1, It+1) independent. Be-
cause ∂b̃0 f̃t is almost surely bounded, by the dominated convergence theorem, the right-hand side is continu-
ous in Σ̂. By the continuous mapping theorem and (B.16), we conclude E[∂b̃0 f̃t(b̃

0
f ′ , b

t
f ′→v;wf ′ , uf ′)|θv, (Tv′′→f ′)v′′∈∂f ′\v]

p→
αt+1. Then, by dominated convergence, E[αt+1θv + II

∣∣ θv] L2→ 0. Moreover, because the terms in the sum
defining II are mutually independent given θv

Var(αt+1θv + II | θv) ≤ (n− 1)E
[
z2f ′v(f̃t(b̃

0
f ′→v, b

t
f ′→v;wf ′ , uf ′)− f̃t(b̃0f ′ , btf ′→v;wf ′ , uf ′))2 | θv

]
≤ L2(n− 1)E[z4f ′vθ

2
v | θv] ≤ 3θ2v/n,

where L is the Lipschitz constant of f̃t. We conclude that E[Var(αt+1θv + II | θv)] → 0. Combined with
E[αt+1θv+ II

∣∣ θv] L2→ 0, we get Var(αt+1θv+ II) = Var(E[αt+1θv+ II|θv])+E[Var(αt+1θv+ II|θv)]→ 0, so that
αt+1θv + II

L2→ 0. Combining I
L2→ 0 and αt+1θv + II

L2→ 0 gives E[(αt+1θv + ãt+1
v→f − at+1

v→f )
2]→ 0, as desired.

We now expand

b̃t+1
f→v − bt+1

f→v =
∑

v′∈∂f\v

zfv′(gt(αt+1θv′ + ãt+1
v′→f ; vv′)− gt(at+1

v′→f ; vv′)).

The terms in this sum are mutually independent, and ãt+1
v′→f ,a

t+1
v′→f , θv′ are independent of zf ′v. Thus,

E[(b̃t+1
f→v − bt+1

f→v)
2] =

p− 1

n
E[(gt(αt+1θv′ + ãt+1

v′→f ; vv′)− gt(at+1
v′→f ; vv′))

2]

≤ L2(p− 1)(t+ 1)

n

t+1∑
s=1

E[(αsθv′ + ãsv′→f − asv′→f )
2]→ 0.

This completes the proof of (B.24a) at s = t+ 1.

Inductive step 2: If (B.24) holds for 1 ≤ s ≤ t, then (B.24b) holds for s = t+ 1.
By Lipschitz continuity,∣∣∣∣∣∣at+1

v→f −
∑

f ′∈∂v\f

zf ′v f̃t(b̃
0
f ′→v, b

t
f ′→v, uf ′ , wf ′)

∣∣∣∣∣∣ ≤ L|θv|
∑

f ′∈∂v\f

|zf ′v|,

where L is a Lipschitz constant for f̃t. The right-hand side has bounded fourth moment, so we must only show
that the sum in the previous display has bounded fourth moment. The quantity f̃t(b̃

0
f ′→v, b

t
f ′→v, uf ′ , wf ′)



APPENDIX B. THE ESTIMATION ERROR OF GENERAL FIRST ORDER METHODS 147

has bounded fourth moment by the inductive hypothesis and Lipschitz continuity of f̃t. Because zf ′v is
independent of the argument to f̃t and has fourth moment 3/n2, the product zf ′v f̃t(b̃

0
f ′→v, b

t
f ′→v, uf ′ , wf ′)

has mean 0 and fourth moment O(1/n2). Because these products are mean zero and independent across f ′,
their sum has bounded fourth moment. We conclude at+1

v→f has bounded fourth moment as well.
Recall bt+1

f→v =
∑
v′∈∂f\v zfv′gt(a

t+1
v′→f ; v

′
v). The terms in the sum are independent, and zfv′ is indepen-

dent of at+1
v′→f ; v

′
v. Using the Lipschitz continuity of gt and the inductive hypothesis, we conclude bt+1

f→v has
bounded fourth moment by the same argument as in the preceding paragraph.

We conclude (B.24b) at s = t+ 1.
The induction is complete, and (B.24a) holds for all s ≥ 1. Lemma 3.5.2 follows by combining Lemma

B.3.1 and Eq. (B.24a).

B.3.3 Message passing in the low-rank matrix estimation model

Like in the preceding section, we prove Lemma 3.5.2 for the low-rank matrix estimation model by showing
that the iteration (3.19) is well approximated by a Gaussian message passing algorithm after a change of
variables. The functions in the Gaussian message passing algorithm are defined in terms of the functions
ft, gt of the original message passing algorithm (3.19).

f̃t(b̃
0, · · · , b̃t, w, u) := ft(b̃

1 + γ1w, · · · , b̃t + γtw; 0, u),

g̃t(ã
1, · · · , ãt; θ, v) := gt(ã

1 + α1θ, · · · , ãt + αtθ; v).

Note that here f̃t does not depend on b̃0 is never used, and we may define g̃0 arbitrarily without affecting
later iterates.3 Define (ãtv→f )t≥1, (ãtv)t≥1, (q̃tv→f )t≥0, (b̃tf→v)t≥0, (b̃tf )t≥0, (r̃tf→v)t≥0 via the Gaussian message
passing algorithm (B.20) with initial data θv, vv, uf , zfv and wf = λf . Because ft, gt, and h are Lipschitz, so
too are f̃t and g̃t. Under the function definitions f̃t, g̃t given above and the change of variables wf = λf , the
definitions of Σs,s and Ts,s′ in (B.22) and (B.17) are equivalent. Thus, Lemma B.3.1 holds for the iterates
of this Gaussian message passing algorithm with the T [1:t], Σ[0:t] defined by (B.17).

We claim that for fixed s ≥ 1, as n→∞ we have

E[(αsθv + ãsv→f − asv→f )
2]→ 0 and E[(γsλf + b̃sf→v − bsf→v)

2]→ 0, (B.25a)

and
E[θ2v(asv→f )

2] and E[λ2f (bsf→v)
2] are bounded for fixed s. (B.25b)

We show this by induction. There is no base case because the inductive step works for t = 0 as written.

Inductive step: If (B.25) holds for 1 ≤ s ≤ t, then (B.25) holds for s = t+ 1.
We expand

αt+1θv + ãt+1
v→f − at+1

v→f = αt+1θv +
∑

f ′∈∂v\f

zf ′v(ft(b̃
t
f ′→v + γtλf ′ ; 0, uf ′)− ft(btf ′→v; 0, uf ′))

3The iterate b̃0 only played a role in approximating the high-dimensional regression message passing algorithm by a Gaussian
message passing algorithm.
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− 1

n
θv

∑
f ′∈∂v\f

λf ′ft(b
t
f ′→v; 0, uf ′)

=: αt+1θv + I+ II,

where b̃tf ′→v = (b̃1f ′→v, . . . , b̃
t
f ′→v) and γt = (γ1, . . . , γt) (note that b̃0f ′→v is excluded, which differs from the

notation used in the proof of Lemma 3.5.2).
First we analyze I. The terms in the sum defining I are mutually independent, and b̃sf ′→v, b

s
f ′→v, λf ′ ,

uf ′ are independent of zf ′v. Thus,

E[I2] =
n− 1

n
E[(ft(b̃tf ′→v + γtλf ′ ; 0, uf ′)− ft(btf ′→v; 0, uf ′)2]

≤ L2(n− 1)t

n

t∑
s=1

E[(b̃sf ′→v + γsλf ′ − bsf ′→v)
2]→ 0,

by the inductive hypothesis, where L is a Lipschitz constant of ft. Moreover, because θv is independent of I
and has bounded fourth moment, E[θ2vI2]→ 0 as well.

Next we analyze II. By the inductive hypothesis and Lemma B.3.1,

(btf ′→v, λf ′ , uf ′)
W→ (γtΛ + B̃t,Λ, U),

where (Λ, U) ∼ µΛ,U and B̃t ∼ N(0t,Σ[1:t]) independent. Because (bt, λ, u) 7→ λft(b
t; 0, u) is uniformly

pseudo-Lipschitz of order 2 by Lemma B.1.1, we have E[λf ′ft(b
t
f ′→v; 0, uf ′)] → αt+1 by Lemma B.1.2 and

the state evolution recursion (B.17). Moreover, because ft is Lipschitz, for some constant C

E[λ2f ′ft(b
t
f ′→v; 0, uf ′)2] ≤ CE

[
λ2f ′

(
1 +

t∑
s=1

(bsf ′→v)
2 + u2f ′

)]

= C

(
E[λ2f ′ ] +

t∑
s=1

E[λ2f ′(bsf ′→v)
2] + E[λ2f ′u2f ′ ]

)
,

which bounded by the inductive hypothesis and the fourth moment assumption on µΛ,U . Because the terms
in the sum defining II are mutually independent, by the weak law of large numbers the preceding observations
imply

1

n

∑
f ′∈∂v\f

λf ′ft(b
t
f ′→v; 0, uf ′)

L2→ αt+1.

Because θv is independent of this sum and has bounded second moment, we conclude that

αt+1θv + II = θv

αt+1 −
1

n

∑
f ′∈∂v\f

λf ′ft(b
t
f ′→v; 0, uf ′)

 L2→ 0.

Moreover, because θv is independent of the term in parentheses and has bounded fourth moment, E[θ2v(αt+1θv+

II)2]→ 0.
Combining the preceding results, we have that E[(αt+1θv + ãt+1

v→f − at+1
v→f )

2] → 0 and E[θ2v(αt+1θv +

ãt+1
v→f − at+1

v→f )
2] is bounded. Because θv is independent of ãt+1

v→f , the term E[θ2v(ã
t+1
v→f )

2] is bounded, so also
E[θ2v(a

t+1
v→f )

2] is bounded, as desired.
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The argument establishing that E[(γt+1λf + b̃t+1
f→v − bt+1

f→v)
2] → 0 and that E[λ2f (b

t+1
f→v)

2] is bounded is
equivalent. The induction is complete, and (B.25) holds for all s.

Lemma 3.5.2 follows by combining Lemma B.3.1 and Eq. (B.25).

B.4 Proof of information-theoretic lower bounds on the computa-

tion tree (Lemma 3.5.3)

In this section, we prove Lemma 3.5.3 in both the high-dimensional regression and low-rank matrix estimation
models. We restrict ourselves to the case r = 1 and k = 1 (with k the dimensionality of W ) because the
proof for r > 1 or k > 1 is completely analogous but would complicate notation.

For any pair of nodes u, u′ in the tree T , let d(u, u′) denote the length (number of edges) of the shortest
path between nodes u and u′ in the tree. Let Tu,k = (Vu,k,Fu,k, Eu,k) be the radius-k neighborhood of node
u; that is,

Vu,k = {v ∈ V | d(u, v) ≤ k},
Fu,k = {f ∈ F | d(u, f) ≤ k},

Eu,k = {(f, v) ∈ E | max{d(u, f), d(u, v)} ≤ k}.

With some abuse of notation, we will often use Tu,k,Vu,k,Fu,k, Eu,k to denote either the collection of ob-
servations corresponding to nodes and edges in these sets or the σ-algebra generated by these obervations.
No confusion should result. Note, our convention is that when used to denote a σ-algebra or collection of
random variables, only observed random variables are in include. Thus, in the high-dimensional regression
model, Tu,k is the σ-algebra generated by the local observations xfv, yf , vv, and uf ; in the low-rank matrix
estimation, it is the σ-algebra genreated by the local observations xfv, vv, and uf . We also denote by T t,kv→f

the collection of observations associated to edges or nodes of T which are separated from f by v by at least k
intervening edges and at most t intervening edges. For example, T 1,1

v→f contains only (yf ′)f ′∈∂v\f , and T 2,1
v→f

contains additional the observations vv′ and xf ′v′ for v′ ∈ ∂f ′ \ v for some some f ′ ∈ ∂v \ f . The collections
(or σ-algebras) Vt,kv→f , F

t,k
v→f , E

t,k
v→f are defined similarly, as are the versions of these where the roles of v and

f are reversed.

B.4.1 Information-theoretic lower bound in the high-dimensional regression
model

In this section, we prove Lemma 3.5.3 in the high-dimensional regression model.
Note that conditions on the conditional density in assumption R4 are equivalent positivity, boundedness,

and the existence finite, non-negative constants q′k such that |∂k
xp(y|x)|
p(y|x) ≤ q′k for 1 ≤ k ≤ 5. We will often use

this form of the assumption without further comment. This implies that for any random variable A

|∂kxE[p(y|x+A)]|
E[p(y|x+A)]

≤
∫ |∂kxp(y|x+ a)|

p(y|x+ a)

p(y|x+ a)

E[p(y|x+A)]
µA(da) ≤ q′k, (B.26)

because p(y|x+ a)/E[p(y|x+A)] is a probability density with respect to µA, the distribution of A.
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Denote the regular conditional probability of Θ conditional on V for the measure µΘ,V by µΘ|V : R×B →
[0, 1], where B denotes the Borel σ-algebra on R. The posterior of θv given Tv,2t has density with respect to
µΘ|V (vv, ·) given by

pv(ϑ|Tv,2t) ∝
∫ ∏

f∈Fv,2t

p(yf |
∑
v′∈∂f

ϑv′Xv′f , uf )
∏

v′∈Vv,2t\v

µΘ|V (vv′ ,dϑv′).

Asymptotically, the posterior density with respect to µΘ|V (vv, ·) behaves like that produced by a Gaussian
observation of θv with variance τ2t , where τt is defined by (3.5).

Lemma B.4.1. In the high-dimensional regression model, there exist Tv,2t-measurable random variables
τv,t, χv,t such that

pv(ϑ|Tv,2t) ∝ exp

(
− 1

2τ2v,t
(χv,t − ϑ)2 + op(1)

)
,

where op(1) has no ϑ dependence. Moreover, (χv,t, τv,t, θv, vv)
d→ (Θ + τtG, τt,Θ, V ) where (Θ, V ) ∼ µΘ,V ,

G ∼ N(0, 1) independent of Θ, V , and τt is given by (3.5).

Proof.[Lemma B.4.1] We compute the posterior density pv(ϑ|Tv,2t) via an iteration called belief propaga-
tion. For each edge (v, f) ∈ E , belief propagation generates a pair of sequences of real-valued functions
(mt

v→f (ϑ))t≥0, (m
t
f→v(ϑ))t≥0. The iteration is

m0
v→f (ϑ) = 1,

ms
f→v(ϑ) ∝

∫
p(yf |Xfvϑ+

∑
v′∈∂f\v

Xfv′ϑv′ , uf )
∏

v′∈∂f\v

ms
v′→f (ϑv′)

∏
v′∈∂f\v

µΘ|V (vv′ ,dϑv′),

ms+1
v→f (ϑ) ∝

∏
f ′∈∂v\f

ms
f ′→v(ϑ),

with normalization
∫
mt
f→v(ϑ)µΘ|V (vv,dϑ) =

∫
mt
v→f (ϑ)µΘ|V (vv,dϑ) = 1. For any variable node v,

pv(ϑ|Tv,2t) ∝
∏
f∈∂v

mt−1
f→v(ϑ). (B.27)

This equation is exact.
We define several quantities related to the belief propagation iteration.

µsv→f =

∫
ϑms

v→f (ϑ)µΘ|V (vv,dϑ), (τ̃sv→f )
2 =

∫
ϑ2ms

v→f (ϑ)µΘ|V (vv,dϑ)− (µsv→f )
2,

µsf→v =
∑

v′∈∂f\v

xfv′µ
s
v′→f , (τ̃sf→v)

2 =
∑

v′∈∂f\v

x2fv′(τ̃
s
v′→f )

2,

asf→v =
1

xfv

d

dϑ
logms

f→v(ϑ)
∣∣∣
ϑ=0

, bsf→v = −
1

x2fv

d2

dϑ2
logms

f→v(ϑ)
∣∣∣
ϑ=0

,

asv→f =
d

dϑ
logms

v→f (ϑ)
∣∣∣
ϑ=0

, bsv→f = − d2

dϑ2
logms

v→f (ϑ)
∣∣∣
ϑ=0

,

χsv→f = asv→f/b
s
v→f , (τsv→f )

2 = 1/bsv→f .

Lemma B.4.1 follows from the following asymptotic characterization of the quantities in the preceding display
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in the limit n, p→∞, n/p→ δ:

E[(µsv→f )
2]→ δσ2

s , E[(τ̃sv→f )
2]→ δτ̃2s ,

(µsf→v, uf )
d→ N(0, σ2

s)⊗ µU , (τ̃sf→v)
2 p→ τ̃2s ,

(θv, vv, a
s
v→f/b

s
v→f , b

s
v→f )

d→ (Θ, V,Θ+ τsG, 1/τ
2
s ),

(B.28)

where in the last line Θ ∼ µΘ, G ∼ N(0, 1) independent, and σ2
s , τ

2
s are defined in (3.5). By symmetry, the

distribution of these quantities does not depend upon v or f , so that the limits holds for all v, f once we
establish them for any v, f . We establish the limits inductively in s.

Base case: E[(µ0
v→f )

2]→ δσ2
0 and E[(τ̃0v→f )

2]→ δτ̃20 .
Observe that µsv→f =

∫
ϑµΘ|V (vv,dϑ) = EΘ,V [Θ|V = vv]. Because vv ∼ µV , we have E[(µ1

v→f )
2] =

EΘ,V [EΘ,V [Θ|V ]2] = E[Θ2] − mmseΘ,V (∞) = δσ2
1 . Similarly, (τ̃1v→f )

2 = VarΘ,V (Θ|V = vv), so that
E[(τ̃1v→f )

2] = mmseΘ,V (∞) = δτ̃20 .

Inductive step 1: If E[(µsv→f )
2]→ δσ2

s , then (µsf→v, uf )
d→ N(0, σ2

s)⊗ µU .
The quantity µsv′→f is T 2s,0

v′→f -measurable, whence it is independent of xfv′ and uf . Moreover, (µv′→f , xfv)

are independent as we vary v′ ∈ ∂f \ v. Thus, µsf→v|T 2s+1,1
f→v ∼ N(0, 1

n

∑
v′∈∂f\v(µ

s
v′→f )

2). Note that
E[ 1n

∑
v′∈∂f\v(µ

s
v′→f )

2] = (p − 1)E[(µsv→f )
2]/n → σ2

s by the inductive hypothesis. Moreover, µsv→f has
bounded fourth moments because it is bounded byM . By the weak law of large numbers, 1

n

∑
v′∈∂f\v(µ

s
v′→f )

2 p→
σ2
s . We conclude by Slutsky’s theorem and independence that (µsf→v, uf )

d→ N(0, σ2
s)⊗ µU .

Inductive step 2: If E[(τ̃sv→f )
2]→ δτ̃2s , then (τ̃sf→v)

2 p→ τ̃2s .
The quantity τ̃sv′→f is T 2s,0

v′→f -measurable, whence it is independent of xfv′ . Therefore,

E[
∑

v′∈∂f\v

x2fv′(τ̃
s
v′→f )

2] = (p− 1)E[(τ̃sv→f )
2]/n→ τ̃2s .

Moreover, (τ̃v′→f , xfv) are mutually independent as we vary v′ ∈ ∂f \v, and because τ̃sv→f is bounded by M ,
the terms nx2fv′(σ

s
v′→f )

2 have bounded fourth moments. By the weak law of large numbers, (τ̃sf→v)
2 p→ τ̃2s .

Inductive step 3: If (µsf→v, uf , τ̃
s
f→v)

d→ N(0, σ2
s) ⊗ µU ⊗ δτ̃s , then (θv, vv, a

s+1
v→f/b

s+1
v→f , b

s+1
v→f )

d→ (Θ, V,Θ +

τs+1G, 1/τ
2
s+1) where G ∼ N(0, 1) independent of (Θ, V ) ∼ µΘ,V .

For all (f, v) ∈ E and s ≥ 1, define

psf→v(y;x) =

∫
p(y|x+

∑
v′∈∂f\v

xfv′ϑv′ , uf )
∏

v′∈∂f\v

ms
v′→f (ϑv′)

∏
v′∈∂f\v

µΘ|V (vv′ ,dϑv′).

More compactly, we may write psf→v(y;x, uf ) = E{Θv′}[p(y|x+
∑
v′∈∂f\v xfv′Θv′ , uf )], where it is understood

that the expectation is taken over Θv′ independent with densities ms
v′→f with respect to µΘ|V (vv′ , ·). Note

that for all x, we have ∫
psf→v(y;x)dy = 1
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everywhere. That is, psf→v(·;x) is a probability density with respect to Lebesgue measure. We will denote
by ṗsf→v(y;x) =

d
dξp

s
f→v(y;x)

∣∣
ξ=x

, and likewise for higher derivatives. These derivatives exist and may be
taken under the integral by R4. Define

asf→v(y) =
d

dx
log psf→v(y;x)

∣∣∣
x=0

and bsf→v(y) = −
d2

dx2
log psf→v(y;x)

∣∣∣
x=0

.

For fixed y, the quantity asf ′→v(y) is independent of xf ′v, and (asf ′→v(y), xf ′v) are mutually independent for
f ′ ∈ ∂v \ f . Observe that

asf→v = asf→v(yf ) and as+1
v→f =

∑
f ′∈∂v\f

xf ′va
s
f ′→v(yf ′),

bsf→v = bsf→v(yf ) and bs+1
v→f =

∑
f ′∈∂v\f

x2f ′vb
s
f ′→v(yf ′).

We will study the distributions of asf→v, a
s+1
v→f , b

s
f→v, and bs+1

v→f under several measures, which we now
introduce. Define Pv,ϑ to be the distribution of the regression model with θv forced to be θ and vv forced
to be 0. That is, under Pv,θ, we have (θv′ , vv′)

iid∼ µΘ,V for v′ ̸= v, vv = 0 and θv = θ, the features are
distributed independently xfv′

iid∼ N(0, 1/n) for all f, v′, and the observations yf are drawn independently
from p(·|∑v′∈∂f xfv′θv′) for all f . We will consider the distribution of asf→v, a

s+1
v→f , b

s
f→v, and bs+1

v→f under
Pv,θ for θ ∈ [−M,M ].

We require the following lemmas, whose proofs are deferred to Section B.4.1.

Lemma B.4.2. Under Pv,θ for any θ ∈ [−M,M ], we have for all fixed y that

psf→v(y; 0)− EG1
[p(y|µsf→v + τ̃sf→vG1, uf )] = op(1),

ṗsf→v(y; 0)− EG1 [ṗ(y|µsf→v + τ̃sf→vG1, uf )] = op(1),

p̈sf→v(y; 0)− EG1
[p̈(y|µsf→v + τ̃sf→vG1, uf )] = op(1),

where the expectation is over G1 ∼ N(0, 1). Further, for any u, the functions (µ, τ̃) 7→ EG1
[p(y|µ+ τ̃G1, u)],

(µ, τ̃) 7→ EG1
[ṗ(y|µ+ τ̃G1, u)], and (µ, τ̃) 7→ EG1

[p̈(y|µ+ τ̃G1, u)] are continuous.

Lemma B.4.3. Under Pv,θ for any θ ∈ [−M,M ], we have for any fixed s

log
ms+1
v→f (ϑ)

ms+1
v→f (0)

= ϑas+1
v→f −

1

2
ϑ2bs+1

v→f +Op(n
−1/2),

where Op(n−1/2) has no ϑ dependence, and the statement holds for ϑ ∈ [−M,M ].

First we study the distribution of as+1
v→f , b

s+1
v→f under Pv,0. Because µsf ′→v, τ̃

s
f ′→v is independent of θv, vv

for all f ′ ∈ ∂v, its distribution is the same under Pv,θ for all θ ∈ [−M,M ] and is equal to its distribution
under the original model. Thus, the inductive hypothesis implies (µsf→v, τ̃

s
f→v)

d−−−→
Pv,0

N(0, σ2
s)× δτ̃s .
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By Lemma B.4.2, the inductive hypothesis, and Lemma B.1.3, we have for fixed y
EG1 [p(y|µsf→v + τ̃sf→vG1, uf )]

EG1
[ṗ(y|µsf→v + τ̃sf→vG1, uf )]

EG1
[p̈(y|µsf→v + τ̃sf→vG1, uf )]

 d−−−→
Pv,0


EG1 [p(y|σsG0 + τ̃sG1, U ]

EG1
[ṗ(y|σsG0 + τ̃sG1, U)]

EG1
[p̈(y|σsG0 + τ̃sG1, U)]

 ,

where and G0, G1 ∼ N(0, 1) and U ∼ µU independent. Applying Lemma B.4.2 and Slutsky’s Theorem, we
have that 

psf→v(y; 0)

ṗsf→v(y; 0)

p̈sf→v(y; 0)

 d−−−→
Pv,0


EG1

[p(y|σsG0 + τ̃sG1, U)]

EG1
[ṗ(y|σsG0 + τ̃sG1, U)]

EG1 [p̈(y|σsG0 + τ̃sG1, U)]

 .

By the Continuous Mapping Theorem,

psf→v(y; 0)
d−−−→

Pv,0

EG1
[p(y|σsG0 + τ̃sG1, U)],

asf→v(y)
d−−−→

Pv,0

d

dx
logEG1 [ṗ(y|σsG0 + τ̃sG1, U)]

∣∣∣
x=0

,

bsf→v(y)
d−−−→

Pv,0

− d2

dx2
logEG1

[ṗ(y|σsG0 + τ̃sG1, U)]
∣∣∣
x=0

.

Because the quantity p(y|x) is bounded (assumption R4) and the quantities asf→v(y), b
s
f→v(y) are bounded

by (B.26), we have

EPv,0
[psf→v(y|0)]→ EG0,G1,U [p(y|σsG0 + τ̃sG1, U)],

EPv,0
[asf→v(y)

2]→ EG0,U

[(
d

dx
logEG1

[ṗ(y|σsG0 + τ̃sG1, U)]
∣∣∣
x=0

)2
]
,

EPv,0
[bsf→v]→ −EG0,U

[
d2

dx2
logEG1

[ṗ(y|σsG0 + τ̃sG1, U)]
∣∣∣
x=0

]
.

Under Pv,0, we have for all f ′ ∈ ∂v that the random variable yf ′ is independent of xf ′v. Thus, conditional
on T 2s+2,1

v→f , the random variable
∑
f ′∈∂v\f xf ′va

s
f ′→v(yf ′) is normally distributed. Specifically,

∑
f ′∈∂v\f

xf ′va
s
f ′→v(yf ′)

∣∣ T 2s+2,1
v→f ∼

Pv,0

N

0,
1

n

∑
f ′∈∂v\f

(asf ′→v(yf ′))2

 .

Because (asf ′→v(yf ′))2 is bounded by (B.26), if we show EPv,0
[(asf→v(yf ))

2]→ 1/τ2s+1, then the weak law of
large numbers and Slutsky’s theorem will imply that

as+1
v→f =

∑
f ′∈∂v\f

xf ′va
s
f ′→v(yf ′)

d−−−→
Pv,0

N
(
0, 1/τ2s+1

)
. (B.29)

We compute

EPv,0 [(a
s
f→v(yf ))

2] = EPv,0 [EPv,0 [(a
s
f→v(yf ))

2|σ(T 2s+1,1
f→v , (xfv′)v′∈∂f\v), uf ]]
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= EPv,0

[∫
asf→v(y)

2psf→v(y; 0)dy

]
=

∫
EPv,0

[
asf→v(y)

2psf→v(y; 0)
]
dy.

where the second equation holds because under Pv,0 we have yf | σ(T 2s+1,1
f→v , (xfv′)v′∈∂f\v, uf ) has density

psf→v(·; 0) with respect to Lebesgue measure, and the last equation follows by Fubini’s theorem (using the
non-negativity of the integrand). Because asf→v(y)

2 ≤ (q′1)
2 and EPv,0

[psf→v(y; 0)] are probability densities
which converge pointwise to EG1

[p(y|σsG0 + τ̃sG1)], we conclude that

EPv,0 [(a
s
f→v(yf ))

2]→
∫

EG0,U

[
EG1

[ṗ(y|σsG0 + τ̃sG1, U)]2

EG1 [p(y|σsG0 + τ̃sG1, U)]

]
dy

= EG0,U

[∫
EG1

[ṗ(y|σsG0 + τ̃sG1, U)]2

EG1 [p(y|σsG0 + τ̃sG1, U)]
dy

]
=

1

τ2s+1

,

where we have used the alternative characterization of the recursion (3.5) from Lemma B.1.4. We conclude
(B.29).

Now we compute the asymptotic behavior of bs+1
v→f under Pv,0. Under Pv,0, xf ′v is independent of yf ′ , and

(xf ′v, b
s
f ′→v(yf ′)) are mutually independent for f ′ ∈ ∂v\f . Thus, EPv,0 [x

2
f ′vb

s
f ′→v(yf ′)] = EPv,0 [b

s
f ′→v(yf ′)]/n.

Because bsf ′→v(yf ′) is bounded by (B.26), if we can show that EPv,0
[bsf ′→v(yf ′)] → 1/τ2s+1, then bs+1

v→f

p−−−→
Pv,0

1/τ2s+1 will follow by the weak law of large numbers. We compute

EPv,0
[bsf→v(yf )] = EPv,0

[EPv,0
[bsf→v(yf )|σ(T 2s+1,1

f→v , (xfv′)v′∈∂f\v, uf )]]

= EPv,0

[∫
bsf→v(y)p

s
f→v(y; 0)dy

]
=

∫
EPv,0

[
bsf→v(y)p

s
f→v(y; 0)

]
dy

where the last equation follows by Fubini’s theorem (using that the integrand is bounded by the integrable
function q2EPv,0 [p

s
f→v(y; 0)]). The integrands converge point-wise, so that

EPv,0
[bsf→v(yf )]

→ EG0,U

[∫
EG1

[ṗ(y|σsG0 + τ̃sG1, U)]2

EG1
[p(y|σsG0 + τ̃sG1, U)]

dy

]
−
∫

EG0,G1,U [p̈(y|σsG0 + τ̃sG1, U)]dy

=
1

τ2s+1

,

where we have concluded that the second integral is zero because x 7→ EG0,G1,U [p(y|σsG0 + τ̃sG1, U)] pa-
rameterizes a statistical model whose scores up to order 3 are bounded by (B.26). Thus, we conclude that
bs+1
v→f

p−−−→
Pv,0

1/τ2s+1.

Now we compute the asymptotic distribution of (as+1
v→f , b

s+1
v→f ) under Pv,θ for any θ ∈ [−M,M ]. The

log-likelihood ratio between Pv,θ and Pv,0 is

∑
f ′∈∂v

log
psf ′→v(yf ′ |xf ′vθ)

psf ′→v(yf ′ |0) = log
ms+1
v→f (θ)

ms+1
v→f (0)

+ log
psf→v(yf |xfvθ)
psf→v(yf |0)
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= θas+1
v→f −

1

2
θ2bs+1

v→f +Op(n
−1/2),

where we have used Lemma B.4.3 and that
∣∣∣log psf→v(yf |xfvθ)

psf→v(yf |0)

∣∣∣ ≤Mq1|xfv| = Op(n
−1/2). Thus,

(
as+1
v→f , b

s+1
v→f , log

Pv,θ
Pv,0

)
p−−−→

Pv,0

(
Z,

1

τ2s+1

, θZ − 1

2

θ2

τ2s+1

)
,

where Z ∼ N(0, 1/τ2s+1). By Le Cam’s third lemma [188, Example 6.7], we have

(as+1
v→f , b

s+1
v→f )

d−−−→
Pv,θ

(
Z ′,

1

τ2s+1

)
.

where Z ′ ∼ N(θ/τ2s+1, 1/τ
2
s+1). By the Continuous Mapping Theorem [188, Theorem 2.3], we conclude

(as+1
v→f/b

s+1
v→f , b

s+1
v→f )

d−−−→
Pv,θ

N(θ, τ2s+1)⊗ δ1/τ2
s+1

.

Denote by P ∗ the distribution of the the original model. Consider a continuous bounded function
f : (θ, ν, χ, b) 7→ R, and define f̂n(θ, ν) = EPv,θ

[f(θ, ν, as+1
v→f/b

s+1
v→f , b

s+1
v→f )]. Under P ∗, the random variables

as+1
v→f , b

s+1
v→f are functions are θv and random vectors D := Tv,2t \ {θv, vv}, which is independent of θv, vv. In

particular, we may write

EP∗ [f(θv, vv, a
s+1
v→f/b

s+1
v→f , b

s+1
v→f )] = EP∗ [f(θv, vv, χ(θv,D), B(θv,D))],

for some measurable functions χ,B. We see that

EP∗ [f(θv, vv, a
s+1
v→f/b

s+1
v→f , b

s+1
v→f ) | θv, vv] = f̂n(θv, vv)

where
f̂n(θ, ν) = ED[f(θ, ν, χ(θ,D), B(θ,D))],

with D distributed as it is under P ∗ (see e.g., [76, Example 5.1.5]). Because D has the same distri-
bution on P ∗ as under Pv,θ, we see that in fact f̂n(θ, ν) = EPv,θ

[f(θ, ν, as+1
v→f/b

s+1
v→f , b

s+1
v→f )]. Because

(as+1
v→f/b

s+1
v→f , b

s+1
v→f )

d−−−→
Pv,θ

N(θ, τ2s+1) ⊗ δ1/τ2
s+1

, we conclude that f̂n(θ, ν) → EG[f(θ, ν, θ + τs+1G, τ
−2
s+1)] for

all θ, ν. By bounded convergence and the tower property, EΘ,V [f̂n(Θ, V )]→ EΘ,V,G[f(θ, ν, θ+ τs+1G, τ
−2
s+1)]

where (Θ, V ) ∼ µΘ,V independent of G ∼ N(0, 1). Also by the tower property, we have

EΘ,V [f̂n(Θ, V )] = EP∗ [f(θv, vv, χ(θv,D), B(θv,D))] = EP∗ [f(θv, vv, a
s+1
v→f/b

s+1
v→f , b

s+1
v→f )].

We conclude
EP∗ [f(θv, vv, a

s+1
v→f/b

s+1
v→f , b

s+1
v→f )]→ EΘ,V,G[f(Θ, V,Θ+ τs+1G, τ

−2
s+1)].

Thus, we conclude that (θv, vv, a
s+1
v→f/b

s+1
v→f , b

s+1
v→f )

d−−→
P∗

(Θ, V,Θ+ τs+1G, 1/τ
2
s+1), as desired.

Inductive step 4: If (θv, vv, as+1
v→f/b

s+1
v→f , b

s+1
v→f )

d→ (Θ, V,Θ + τs+1G, 1/τ
2
s+1) where G ∼ N(0, 1) independent

of (Θ, V ) ∼ µΘ,V , then E[(µsv→f )
2]→ δσ2

s and E[(τ̃sv→f )
2]→ mmseΘ,V (τ2s ).
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Define

ϵsv→f = sup
ϑ∈[−M,M ]

∣∣∣∣∣log ms
v→f (ϑ)

ms
v→f (0)

−
(
ϑasv→f −

1

2
ϑ2bsv→f

)∣∣∣∣∣ ,
where because all the terms are continuous in ϑ, the random variable ϵsv→f is measurable and finite. We
have that

µsv→f ≥
∫
ϑ exp(ϑasv→f − ϑ2bsv→f/2− ϵsv→f )µΘ(vv,dϑ)∫
exp(ϑasv→f − ϑ2bsv→f/2 + ϵsv→f )µΘ(vv,dϑ)

≥ e−2ϵsv→f ηΘ,V (a
s
v→f/b

s
v→f , vv; 1/b

s
v→f )

where ηΘ,V (y, v; τ
2) = EΘ,V,G[Θ|Θ + τG = y;V = v] where (Θ, V ) ∼ µΘ,V , G ∼ N(0, 1) independent.

Likewise,
µsv→f ≤ e2ϵ

s
v→f ηΘ,V (a

s
v→f/b

s
v→f , vv; 1/b

s
v→f ).

Because ηΘ,V takes values in the bounded interval [−M,M ] and ϵv→f = op(1) by Lemma B.4.3, we conclude
that

µsv→f = ηΘ,V (a
s
v→f/b

s
v→f , vv; 1/b

s
v→f ) + op(1).

For a fixed vv, the Bayes estimator ηΘ,V is continuous in the observation and the noise variance on R×R>0.4

Thus, by the inductive hypothesis and the fact that vv ∼ µV for all n, we have E[ηΘ,V (asv→f/b
s
v→f , vv; 1/b

s
v→f )

2] =

E[ηΘ,V (asv→f/b
s
v→f , vv; 1/b

s
v→f )

2 ∨M2] → EΘ,V,G[ηΘ,V (Θ + τsG,V ; τ2s )] = E[Θ2] − mmseΘ,V (τ2s ) = δσ2
s by

Lemma B.1.3. By the previous display and the boundedness of µsv→f and ηΘ,V , we conclude E[(µsv→f )
2]→

δσ2
s , as desired.

Similarly, we may derive that

e−2ϵsv→f s2Θ,V (a
s
v→f/b

s
v→f , vv; 1/b

s
v→f ) ≤

∫
ϑ2ms

v→f (ϑ)µΘ(dϑ)

≤ e2ϵsv→f s2Θ,V (a
s
v→f/b

s
v→f , vv; 1/b

s
v→f ),

where s2Θ,V (y, v; τ
2) = EΘ,V,G[Θ

2|Θ + τG = y, V = v] where (Θ, V ) ∼ µΘ,V , G ∼ N(0, 1) independent. For
fixed vv, the the posterior second moment is continuous in the observation and the noise variance. Further,
it is bounded by M2. Thus, by exactly the same argument as in the previous paragraph, we have that
E[(τ̃sv→f )

2]→ EΘ,V,G[s
2
Θ,V (Θ + τsG,V ; τ2s )− ηΘ,V (Θ + τsG,V ; τ2s )

2] = mmseΘ,V (τ2s ), as desired.
The inductive argument is complete, and (B.28) is established.
To complete the proof of Lemma B.4.1, first observe by (B.27) that we may express log pv(ϑ|Tv,2t) as,

up to a constant, log mt
v→f (ϑ)

mt
v→f (0)

+ log
mt−1

f→v(ϑ)

mt−1
f→v(0)

. Note that

∣∣∣∣∣log m
t−1
f→v(ϑv)

mt−1
f→v(0)

∣∣∣∣∣ ≤M |xfv| supx∈R

∣∣∣∣∣ ṗ
t−1
f→v(yf ;x)

pt−1
f→v(yf ;x)

∣∣∣∣∣ ≤Mq1|xfv| = op(1).

By Lemma B.4.3, we have that, up to a constant, log mt
v→f (ϑ)

mt
v→f (0)

= − 1
2b
s
v→f

(
atv→f/b

t
v→f − ϑ

)2
+ op(1). The

lemma follows from (B.28).

4This commonly known fact holds, for example, by [124, Theorem 2.7.1] because the posterior mean can be viewed as the
mean in an exponential family paramterized by the observation and noise variance.
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We complete the proof of Lemma 3.5.3 for the high-dimensional regression model. Consider any esti-
mator θ̂ : Tv,2t 7→ [−M,M ] on the computation tree. We compute

E[ℓ(θv, θ̂(Tv,2t))] = E[E[ℓ(θv, θ̂(Tv,2t))|Tv,2t]]

= E
[∫

ℓ(ϑ, θ̂(Tv,2t))
1

Z(Tv,2t)
exp

(
− 1

2τ2v,t
(χv,t − ϑ)2 + op(1)

)
µΘ|V (vv,dϑ)

]
≥ E

[
exp(−2ϵv)

∫
ℓ(ϑ, θ̂(Tv,2t))

1

Z(χv,t, τv,t, vv)
exp

(
− 1

2τ2v,t
(χv,t − ϑ)2

)
µΘ|V (vv,dϑ)

]
≥ E [exp(−2ϵv)R(χv,2t, τv,2t, vv)] ,

where Z(Tv,2t) =
∫
exp

(
− 1

2τ2
v,t

(χv,t − ϑ)2 + op(1)
)
µΘ|V (vv,dϑ),

R(χ, τ, v) := inf
d∈R

∫
1

Z
ℓ(ϑ, d)e−

1
2τ2 (χ−ϑ)2µΘ|V (v,dϑ) ,

and
ϵv = sup

ϑ∈[−M,M ]

∣∣∣∣log p(ϑ|Tv,2t)p(0|Tv,2t)
+ ϑχv,t/τ

2
v,t − ϑ2/(2τ2v,t)

∣∣∣∣ .
Because Θ is bounded support, by Lemma B.1.5(b), R(χ, τ, v) is continuous in (χ, τ) on R×R>0. By Lemma
B.4.1, ϵv = op(1). The quantity on the right-hand side does not depend on θ̂, so provides a uniform lower
bound over the performance of any estimator. Because (vv, χv,2t, τv,2t, ϵv)

d→ (V,Θ+τtG, τt, 0), vv
d
= V for all

n, and τt > 0, we have E [exp(−2ϵv)R(χv,2t, τv,2t, vv)]→ E[R(Θ+τtG, τt, V )] = inf θ̂(·) E[ℓ(Θ, θ̂(Θ+τtG,V ))],
where the convergence holds by Lemma B.1.3 and the equality holds by Lemma B.1.5(a). Thus,

lim inf
n→∞

inf
θ̂(·)

E[ℓ(θv, θ̂(Tv,2t))] ≥ inf
θ̂(·)

E[ℓ(Θ, θ̂(Θ + τtG))].

The proof of Lemma 3.5.3 in the high-dimensional regression model is complete.

Technical tools

Proof.[Lemma B.4.2] By Lindeberg’s principle (see, e.g., [51]) and using that µΘ is supported on [−M,M ],
we have

|psf→v(y; 0)− EG1
[p(y|µsf→v + τ̃sf→vG1, uf )]| ≤

M3 supx∈R |∂3xp(y|x, uf )|
3

∑
v′∈∂f\v

|xfv′ |3,

|ṗsf→v(y; 0)− EG1
[ṗ(y|µsf→v + τ̃sf→vG1, uf )]| ≤

M3 supx∈R |∂4xp(y|x, uf )|
3

∑
v′∈∂f\v

|xfv′ |3,

|p̈sf→v(y; 0)− EG1
[p̈(y|µsf→v + τ̃sf→vG1, uf )]| ≤

M3 supx∈R |∂5xp(y|x, uf )|
3

∑
v′∈∂f\v

|xfv′ |3.

Using the supx∈R |∂kxp(y|x, u)| ≤ q′k supx∈R |p(y|x, u)| <∞ for k = 3, 4, 5 by R4, we have that for fixed y the
expectations on the right-hand side go to 0 as n→∞, whence the required expessions are op(1).

Further, |EG1
[p(y|µ + τ̃G1, u)] − EG1

[p(y|µ′ + τ̃ ′G1, u)]| ≤ (|µ − µ′| + |τ̃ − τ̃ ′|
√
2/π) supx∈R |ṗ(y|x, u)|,

whence EG1 [p(y|µ+ τ̃G1, u)] is continuous in (µ, τ̃) by R4. The remaining continuity results follow similarly.
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Proof.[Lemma B.4.3] Fix any ϑ ∈ [−M,M ]. By Taylor’s theorem, there exist ϑi ∈ [−M,M ] (in fact,
between 0 and ϑ) such that

log
ms+1
v→f (ϑ)

ms+1
v→f (0)

=
∑

f ′∈∂v\f

log
ms
f ′→v(ϑ)

ms
f ′→v(0)

= ϑas+1
v→f −

1

2
ϑ2bs+1

v→f +
1

6
ϑ3

∑
f ′∈∂v\f

(
d3

dϑ3
logEĜf′

[p(yf ′ |xf ′vϑ+ Ĝf ′ , uf ′)]

∣∣∣∣
ϑ=ϑi

)
.

where it is understood that expectation is taken with respect to Ĝf ′
d
=
∑
v′∈∂f ′\v xf ′v′Θv′→f ′ where xf ′v′

is considered fixed and Θv′→f ′ are drawn independently with densities ms
v′→f ′ with respect to µΘ|V (vv′ , ·).

We bound the sum using assumption R4:∣∣∣∣∣∣
∑

f ′∈∂v\f

(
d3

dϑ3
logEĜf′

[p(yf |xfvϑ+ Ĝf ′ , uf ′)]

∣∣∣∣
ϑ=ϑi

)∣∣∣∣∣∣ ≤ q3
∑

f ′∈∂v\f

|xf ′v|3 = Op(n
−1/2).

The proof is complete.

B.4.2 Information-theoretic lower bound in the low-rank matrix estimation
model

In this section, we prove Lemma 3.5.3 in the low-rank matrix estimation model.
Recall that conditions on the conditional density in assumption R4 are equivalent positivity, bounded-

ness, and the existence finite, non-negative constants q′k such that |∂k
xp(y|x)|
p(y|x) ≤ q′k for 1 ≤ k ≤ 5. In particular,

we have (B.26) for any random variable A.
Denote the regular conditional probability of Θ conditional on V for the measure µΘ,V by µΘ|V : R×B →

[0, 1], where B denotes the Borel σ-algebra on R, similarly for µΛ|U . The posterior density of θv given Tv,2t−1

has density respect to µΘ|V (vv, ·) given by

pv(ϑv|Tv,2t−1) ∝
∫ ∏

exp

(
−n
2
(xf ′v′ −

1

n
ℓf ′ϑv′)

2

)∏
µΛ(uf ,dℓf )

∏
µΘ(vv′ ,dϑv′),

where the produces are over (f ′, v′) ∈ Ev,2t−1, f ∈ Fv,2t−1, and v′ ∈ Vv,2t−1, respectively. Asymptotically,
the posterior behaves like that produced by a Gaussian observation of θv with variance τ2t .

Lemma B.4.4. In the low-rank matrix estimation model, there exist Tv,2t−1-measurable random variables
qv,t, χv,t such that for fixed t ≥ 1

pv(ϑ|Tv,2t−1) ∝ exp

(
−1

2
(χv,t − q1/2v,t ϑ)

2 + op(1)

)
,

where op(1) has no ϑ dependence. Moreover, (θv, vv, χv,t, qv,t)
d→ (Θ, V, q

1/2
t Θ + G, qt) where (Θ, V ) ∼

µΘ,V , G ∼ N(0, 1) independent of Θ, V , and qt is given by (3.7).
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Proof.[Lemma B.4.4] As in the proof of Lemma B.4.1, we compute the posterior density pv(ϑ|Tv,2t−1) via
belief propogation. The belief propagation iteration is

m0
f→v(ℓ) = 1,

ms+1
v→f (ϑ) ∝

∫ ∏
f ′∈∂v\f

(
exp

(
−n
2
(xf ′v −

1

n
ℓf ′ϑ)2

)
ms
f ′→v(ℓf ′)µΛ|U (uf ′ ,dℓf ′)

)
,

ms
f→v(ℓ) ∝

∫ ∏
v′∈∂f\v

(
exp

(
−n
2
(xfv′ −

1

n
ℓϑv′)

2

)
ms
v′→f (ϑv′)µΘ|V (vv′ ,dϑv′)

)
,

with normalization
∫
ms
f→v(ℓ)µΛ|U (uf ,dℓ) =

∫
ms
v→f (ϑ)µΘ|V (vv,dϑ) = 1. For t ≥ 1

pv(ϑ|Tv,2t−1) ∝
∫ ∏

f∈∂v

(
exp

(
−n
2
(xfv −

1

n
ℓfϑ)

2

)
mt−1
f→v(ℓf )µΛ|U (uf ,dℓf )

)
,

This equation is exact.
We define several quantities related to the belief propagation iteration.

µsf→v =

∫
ℓms

f→v(ℓ)µΛ|U (uf ,dℓ), ssf→v =

∫
ℓ2ms

f→v(ℓ)µΛ|U (uf ,dℓ),

αs+1
v→f =

1

n

∑
f ′∈∂v\f

µsf ′→vλf ′ , (τs+1
v→f )

2 =
1

n

∑
f ′∈∂v\f

(µsf ′→v)
2,

asv→f =
d

dϑ
logms

v→f (ϑ)
∣∣∣
ϑ=0

, bsv→f = − d2

dϑ2
logms

v→f (ϑ)
∣∣∣
ϑ=0

,

µsv→f =

∫
ϑms

v→f (ϑ)µΘ|V (vv,dϑ), ssv→f =

∫
ϑ2ms

v→f (ϑ)µΘ|V (vv,dϑ),

αsf→v =
1

n

∑
v′∈∂f\v

µsv′→fθv′ , (τ̂sf→v)
2 =

1

n

∑
v′∈∂f\v

(µsv′→f )
2,

asf→v =
d

dℓ
logms

f→v(ℓ)
∣∣∣
ℓ=0

, bsf→v = −
d2

dℓ2
logms

f→v(ℓ)
∣∣∣
ℓ=0

,

Lemma B.4.4 follows from the following asymptotic characterization of the quantities in the preceding display
in the limit n, p→∞, n/p→ δ:

E[µsf→vλf ]→ qs+1, E[(µsf→v)
2]→ qs+1,

αs+1
v→f

p→ qs+1, (τs+1
v→f )

p→ qs+1,

(θv, vv, a
s
v→f , b

s
v→f )

d→ (Θ, V, qsΘ+ q1/2s G2, qs),

E[µsv→fθv]→ δq̂s, E[(µsv→f )
2]→ δq̂s,

αsf→v
p→ q̂s, (τ̂s+1

f→v)
2 p→ q̂s,

(λf , uf , a
s
f→v, b

s
f→v)

d→ (Λ, U, q̂sΛ + q̂1/2s G, q̂s).

(B.30)

As in the proof of Lemma B.4.1, the distribution of these quantities does not depend upon v or f , so that
the limits hold for all v, f once we establish them for any v, f . We establish the limits inductively in s.
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Base case: E[µ0
f→vλf ]→ q1 and E[(µ0

f→v)
2]→ q1.

Note µ0
f→v = E[λf |uf ]. Thus E[µ0

f→vλf ] = E[E[λf |uf ]2] = VΛ,U (0) = q1 exactly in finite samples, so
also asymptotically. The expectation E[(µ0

f→v)
2] has the same value.

Inductive step 1: If E[µsf→vλf ]→ qs+1 and E[(µsf→v)
2]→ qs+1, then αs+1

v→f

p→ qs+1 and (τs+1
v→f )

2 p→ qs+1.
By the inductive hypothesis, E[αs+1

v→f ] = (n−1)E[µsf→vλf ]/n→ qs+1 and E[(τs+1
v→f )

2] = (n−1)E[(µsf→v)
2]/n→

qs+1. Moreover, µsf ′→vλf ′ are mutually independent as we vary f ′ ∈ ∂v \ f , and likewise for µsf ′→v. We have
E[(µsf ′→vλf ′)2] ≤ M4 and E[(µsf ′→v)

4] ≤ M4 because the integrands are bounded by M4. By the weak law
of large numbers, αs+1

v→f

p→ qs+1 and (τs+1
v→f )

2 p→ qs+1.

Inductive step 2: If αs+1
v→f

p→ qs+1 and (τs+1
v→f )

2 p→ qs+1, then (θv, vv, a
s+1
v→f , b

s+1
v→f )

d→ (Θ, V, qs+1Θ +

q
1/2
s+1G, qs+1).

We may express

logms+1
v→f (ϑ) = const+

∑
f ′∈∂v\f

logEΛf′

[
exp

(
− 1

2n
Λ2
f ′ϑ2 + xf ′vΛf ′ϑ

)]
,

where Λf ′ has density ms
f ′→v with respect to µΛ|U (uf ′ , ·). We compute

d

dϑ
EΛf′

[
exp

(
− 1

2n
Λ2
f ′ϑ2 + xf ′vΛf ′ϑ

)] ∣∣∣
ϑ=0

= EΛf′ [xf ′vΛf ′ ] = xf ′vµ
s
f ′→v,

d2

dϑ2
EΛf′

[
exp

(
− 1

2n
Λ2
f ′ϑ2 + xf ′vΛf ′ϑ

)] ∣∣∣
ϑ=0

= EΛf′

[
x2f ′vΛ

2
f ′ − 1

n
Λ2
f ′

]
=

(
x2f ′v −

1

n

)
ssf ′→v.

Then

as+1
v→f =

∑
f ′∈∂v\f

xf ′vµ
s
f ′→v and bs+1

v→f =
∑

f ′∈∂v\f ′

(
x2f ′v(µ

s
f ′→v)

2 −
(
x2f ′v −

1

n

)
ssf ′→v

)
.

We compute

as+1
v→f =

 1

n

∑
f ′∈∂v\f

µsf ′→vλf ′

 θv +
∑

f ′∈∂v\f

zf ′vµ
s
f ′→v.

Because (zf ′v)f ′∈∂v\f are independent of µ2
f ′→v and are mutually independent from each other, conditional on

T 1
v→f the quantity

∑
f ′∈∂v\f zf ′vµ

s
f ′→v is distributed N(0, (τs+1

v→f )
2). By the inductive hypothesis, (τs+1

f→v)
2 p→

qs+1, so that
∑
f ′∈∂v\f zf ′vµ

s
f ′→v

d→ N(0, qs+1). Further, zf ′v and µsf ′→v are independent of θv, and by the
inductive hypothesis, the coefficient of θv converges in probability to qs+1. By the Continuous Mapping
Theorem [188, Theorem 2.3], we conclude that (θv, vv, a

s+1
v→f )

d→ (Θ, V, qs+1Θ + q
1/2
s+1G) where G ∼ N(0, 1)

independent of Θ, as desired.
Now we show that bs+1

v→f
d→ qs+1. We expand bs+1

v→f = A − B where A =
∑
f ′∈∂v\f x

2
f ′v(µ

s
f ′→v)

2 and
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B =
∑
f ′∈∂v\f (x

2
f ′v − 1/n)ssf ′→v. We have

A =
1

n2

∑
v′∈∂f\v

λ2f ′θ2v(µ
s
f ′→v)

2 +
2

n

∑
f ′∈∂v\f

λf ′θvzf ′v(µ
s
f ′→v)

2 +
∑

v′∈∂f\v

z2f ′v(µ
s
f ′→v)

2.

Observe E[λ2f ′θ2v(µ
s
f ′→v)

2] ≤M6, so that the expectation of the first term is bounded by M6(p− 1)/n2 → 0.
Thus, the first term converges to 0 in probability. Because zf ′v is independent of µsf ′→v, E[|λf ′θvzf ′v(µ

s
f ′→v)

2|] ≤
M4
√
2/(πn), so that the absolute value of the expectation of the second term is bounded by 2M4

√
2/(πn)→

0. Thus, the second term converges to 0 in probability. Because µsf ′→v is independent of zf ′v, the expectation
of the last term is (n−1)E[(µf ′→v)

2]/n→ qs+1 (we have used here the assumption of inductive step 1). The
terms (z2f ′v(µ

s
f ′→v)

2)f ′∈∂v\f are mutually independent and E[z4f ′v(µ
s
f ′→v)

4] ≤ 3M4/n2, so that by the weak
law of large numbers we have that the last term converges to qs+1 in probability. Thus, A p→ qs+1.

We have

B =
1

n2

∑
v′∈∂f\v

λ2fθ
2
v′s

s
v′→f +

2

n

∑
v′∈∂f\v

λfθv′s
s
v′→f +

∑
v′∈∂f\v

(z2f ′v − 1/n)ssv′→f .

As in the analysis of the first two terms of A, we may use that ssv′→f ≤M2 to argue that the first two terms
of B converge to 0 in probability. Further, because zf ′v is independent of ssv′→f , the expectation of the last
term is 0. Further, E[(z2f ′v − 1/n)2(ssv′→f )

2] ≤ 2E[(z4f ′v + 1/n2)]E[(ssv′→f )
2] ≤ 8M4/n2, so that by the weak

law of large numbers, the final term converges to 0 in probability. Thus, B p→ 0. Because, as we have shown,
A

p→ qs+1, we conclude bs+1
v→f

p→ qs+1.

Combining with (θv, vv, a
s+1
v→f )

d→ (Θ, V, qs+1Θ+q
1/2
s+1G) and applying the Continuous Mapping Theorem

[188, Theorem 2.3], we have (θv, a
s+1
v→f , b

s+1
v→f )

d→ (Θ, qs+1Θ+ q
1/2
s+1G, qs+1).

Inductive step 3: If (θv, vv, asv→f , b
s
v→f )

d→ (Θ, V, qsΘ+q
1/2
s G1, qs), then E[µsv→fθv]→ δq̂s and E[(µsv→f )

2]→
δq̂s.

We will require the following lemma, whose proof is deferred to section B.4.2.

Lemma B.4.5. For any fixed s, we have ϑ, ℓ ∈ [−M,M ]

log
ms
v→f (ϑ)

ms
v→f (0)

= ϑasv→f −
1

2
ϑ2bsv→f +Op(n

−1/2),

log
ms
f→v(ℓ)

ms
f→v(0)

= ℓasf→v −
1

2
ℓ2bsf→v +Op(n

−1/2),

where Op(n−1/2) has no ϑ (or ℓ) dependence.

Define

ϵsf→v = sup
ϑ∈[−M,M ]

∣∣∣∣∣log ms
v→f (ϑ)

ms
v→f (0)

−
(
ϑasv→f −

1

2
ϑ2bsv→f

)∣∣∣∣∣ .
By Lemma B.4.5, we have ϵsv→f = op(1). Moreover, using the same argument as in inductive step 4 of the
proof of Theorem B.4.1, we have that

e−2ϵsv→f ηΘ,V (a
s
v→f (b

s
v→f )

−1/2, vv; b
s
v→f ) ≤ µsv→f
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≤ e2ϵsv→f ηΘ,V (a
s
v→f (b

s
v→f )

1/2, vv; b
s
v→f ),

where ηΘ,V (y, v; q) = EΘ,V,G[Θ|q1/2Θ+ τG = y;V = v]. Because ηΘ,V takes values in the bounded interval
[−M,M ] and ϵsv→f = op(1) by Lemma B.4.5, we conclude that

µsv→f = ηΘ,V (a
s
v→f/b

s
v→f , vv; b

s
v→f ) + op(1).

For a fixed vv, the Bayes estimator in the observation and coefficient q. Thus, by the inductive hypothesis and
the fact that vv ∼ µV for all n, we have that E[ΘηΘ,V (asv→f (b

s
v→f )

1/2, vv; b
s
v→f )] has limit E[ΘηΘ,V (q1/2s Θ+

G,V ; qs)] = δq̂s and E[ηΘ,V (q1/2s Θ + G,V ; qs)
2] has limit EΘ,V,G[ηΘ,V (q

1/2
s Θ + G,V ; qs)

2] = δq̂s. Because
|θv|, |µsv→f |, |ηΘ,V (asv→f/b

s
v→f , vv; b

s
v→f )| ≤M , by bounded convergence, we conclude E[µsv→fθv]→ δq̂s and

E[(µsf→v)
2]→ δq̂s.

The remaining inductive steps are completely analagous to those already shown. We list them here for
completeness.
Inductive step 4: If E[µsv→fθv]→ δq̂s and E[(µsv→f )

2]→ δq̂s, then αsf→v

p→ q̂s and (τ̂s+1
f→v)

2 p→ q̂s.

Inductive step 5: If αsf→v

p→ q̂s and (τ̂sf→v)
2 p→ q̂s, then (λf , uf , a

s
f→v, b

s
f→v)

d→ (Λ, U, q̂sΛ + q̂
1/2
s G, q̂s).

Inductive step 6: If (λf , uf , asf→v, b
s
f→v)

d→ (Λ, U, q̂sΛ+q̂
1/2
s G, q̂s), then E[µsf→vλf ]→ qs+1 and E[(µsf→v)

2]→
qs+1.

The induction is complete, and we conclude (B.30).
To complete the proof of Lemma B.4.4, first observe that we may express log pv(ϑ|Tv,2t−1)

pv(0|Tv,2t−1)
as log mt

v→f (ϑ)

mt
v→f (ϑ)

+

logEΛf
[exp(ϑxfvΛf − ϑ2Λ2

f/(2n))]. Note that

∣∣logEΛf
[exp(ϑxfvΛf − ϑ2Λ2

f/(2n))]
∣∣ ≤M2|xfv|+M4/2n = op(1).

By Lemma B.4.5, we have that, up to a constant, log mt
v→f (ϑ)

mt
v→f (ϑ)

= − 1
2 ((a

t
v→f (b

t
v→f )

−1/2−btv→f )
1/2ϑ)2+op(1).

The lemma follows from (B.30) and Slutsky’s theorem.

Lemma 3.5.3 in the low-rank matrix estimation model follows from Lemma B.4.4 by exactly the same
argument that derived Lemma 3.5.3 in the high-dimensional regression model from Lemma B.4.1.

Technical tools

Proof.[Lemma B.4.5] Fix any ϑ ∈ [−M,M ]. By Taylor’s theorem, there exist ϑf ′ ∈ [−M,M ] (in fact,
between 0 and ϑ) such that

log
ms
v→f (ϑ)

ms
v→f (0)

=
∑

f ′∈∂v\f

log
EΛf′ [exp(−n(xf ′v − Λf ′ϑ/n)2/2)]

EΛf′ [exp(−nx2f ′v/2)]

= ϑas+1
v→f −

1

2
ϑ2bs+1

v→f +
1

6
ϑ3

∑
f ′∈∂v\f

d3

dϑ3
logEΛf′ [exp(−n(xf ′v − Λf ′ϑ/n)2/2)]

∣∣∣
ϑ=ϑf′

,
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where it is understood that Λf ′ ∼ µΛ|U (uf ′ , ·). Denote ψ(ϑ, ℓ, x) = −n(xf ′v − ℓϑ/n)2/2. By the same
argument that allowed us to derive (B.26) from R4 in the proof of Lemma 3.5.3(a), we conclude

d3

dϑ3
logEΛ[exp(ψ(ϑ,Λ, x))]

∣∣∣
ϑ=ϑf′

≤ C sup
ℓ,ϑ∈[−M,M ]

max{|∂ϑψ(ϑ, ℓ, x)|3, |∂ϑψ(ϑ, ℓ, x)∂2ϑψ(ϑ, ℓ, x)|, |∂3ϑψ(ϑ, ℓ, x)|}

≤ Cmax
{
M3|M2/n+ xf ′v|3, (M2/n)M |M2/n+ xf ′v|, 0

}
,

where C is a universal constant. The expectaton of the right-hand side is O(n−3/2), whence we get

1

6
ϑ3

∑
f ′∈∂v\f

d3

dϑ3
logEΛf′ [exp(−n(xf ′v − Λf ′ϑ/n)2/2)]

∣∣∣
ϑ=ϑf′

= Op(n
−1/2),

where because ϑ ∈ [−M,M ], we may take Op(n−1/2) to have no ϑ-dependence.
The expansion of log ms

f→v(ℓ)

ms
f→v(0)

is proved similarly.

B.5 Weakening the assumptions

Section 3.5 and the preceding appendices establish under the assumptions A1, A2 and either R3, R4 or M2

all claims in Theorems 3.3.1 and 3.3.2 except that the lower bound may be achieved. In this section we show
that if these claims hold under assumptions A1, A2, R3, R4, then they also hold under assumptions A1, A2,
R1, R2 in the high-dimensional regression model; and similarly for the low-rank matrix estimation model. In
the next section we prove we can achieve the lower bounds under the weaker assumptions A1, A2 and either
R1, R2 or M1.

B.5.1 From strong to weak assumptions in the high-dimensional regression
model

To prove the reduction from the stronger assumptions in the high-dimensional regression model, we need the
following lemma, whose proof is given at the end of this section.

Lemma B.5.1. Consider on a single probability space random variables A,B, (Bn)n≥1, and Z ∼ N(0, 1)

independent of the A’s and B’s, all with finite second moment. Assume E[(B−Bn)2]→ 0. Let Y = B+ τZ

and Yn = Bn + τZ for τ > 0. Then

E[E[A|Yn]2]→ E[E[A|Y ]2] .

We now establish the reduction.
Consider µW,U , µΘ,V , and h satisfying R1 and R2. For any ϵ > 0, we construct µW̃ ,Ũ , µΘ̃,Ṽ , and h̃

satisfying R3 and R4 for k = 3 as well as data X ∈ Rn×p, θ, θ̃,v, ṽ ∈ Rp, and y, ỹ,w,u, ũ ∈ Rn and
w̃ ∈ Rn×3 such that the following all hold.
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1. (X,θ,v,u,w,y) and (X, θ̃, ṽ, ũ, w̃, ỹ) are generated according to their respective regression models:
namely, (θj , vj)

iid∼ µΘ,V and (wi, ui)
iid∼ µW,U independent; (θ̃j , ṽj)

iid∼ µΘ̃,Ṽ and (w̃i, ũi)
iid∼ µW̃ ,Ũ

independent; xij
iid∼ N(0, 1/n) independent of everything else; and y = h(Xθ,w) and ỹ = h̃(Xθ̃, ṽ).

Here w̃T
i is the ith row of w̃. We emphasize that the data from the two models are not independent.

2. We have

P
(
1

n
∥y − ỹ∥2 > ϵ

)
→ 0, P

(
1

p
∥v − ṽ∥2 > ϵ

)
→ 0, P

(
1

n
∥u− ũ∥2 > ϵ

)
→ 0 . (B.31)

Note that because in any GFOM the functions F (1)
t , F

(2)
t , G

(1)
t , G

(2)
t , G∗ are Lipschitz and ∥X∥op p→

Cδ <∞ as n, p→∞, n/p→ 0 [191, Theorem 5.31], the previous display and the iteration (3.1) imply

P
(
1

p
∥θ̂t − ˜̂

θt∥2 > c(ϵ, t)

)
→ 0 , (B.32)

for some c(ϵ, t) <∞ which goes to 0 as ϵ→ 0 for fixed t.

3. We have

|mmseΘ,V (τ2s )−mmseΘ̃,Ṽ (τs)
2| < ϵ, (B.33)∣∣∣E [E[G1|h(G,W ) + ϵ1/2Z,G0]

2
]
− E

[
E[G1|h̃(G, W̃ ), G0]

2
]∣∣∣ < τ̃2s ϵ , (B.34)

for all s ≤ t where G0, G1, Z
iid∼ N(0, 1), W ∼ µW , and W̃ ∼ µW̃ independent, and G = σsG0 + τ̃sG1.

We now describe the construction described and prove it has the desired properties. Let µA be a
smoothed Laplace distribution with mean zero and variance 1; namely, µA has a C∞ positive density pA(·)
with respect to Lebesgue measure which satisfies ∂a log pA(a) = c · sgn(a) when |x| > 1 for some positive
constant c. This implies that |∂ka log pA(a)| ≤ qk for all k and some constants qk, and that µA has moments
of all orders.

First we construct h̃ and W̃ . For a ξ > 0 to be chosen, let ĥ be a Lipschitz function such that
E[(ĥ(G,W ) − h(G,W ))2] < ξ for (G,W ) as above, which is permitted by assumption R2. Let L > 0 be a
Lipschitz constant for ĥ. Choose M > 0 such that E[W 21{|W | > M}] < ξ/L2. Define W̄ =W1{|W | ≤M}.
Note that E[(h(G,W )−ĥ(G+ξ1/2A, W̄ ))2] ≤ 2E[(h(G,W )−ĥ(G,W ))2]+2E[(ĥ(G,W )−ĥ(G+ξ1/2A, W̄ ))2] <

4ξ. By Lemma B.5.1, we may pick 0 < ξ < min{ϵ/4, ϵ/L2} sufficiently small that∣∣∣E [E[G1|h(G,W ) + ϵ1/2Z,G0]
2
]
− E

[
E[G1|ĥ(G+ ξ1/2A, W̄ ) + ϵ1/2Z,G0]

2
]∣∣∣ < τ̃2s ϵ .

In fact, because t is finite, we may choose ξ > 0 small enough that this holds for all s ≤ t. Define
W̃ = (W̄,A, Z) and h̃(x, w̃) = ĥ(x+ ξ1/2a, w̄) + ϵ1/2z where w̃ = (w̄, a, z). Then h̃ is Lipschitz, Eq. (B.34)
holds for all s ≤ t, and E[(h(G,W )− h̃(G, W̃ ))2] < ϵ (the last because ξ < ϵ/4).

Now choose K > 0 large enough that

E[Θ21{|Θ| > K}] < δϵ/L2, E[U21{|U | > K}] < ϵ/2, E[V 21{|V | > K}] < ϵ/2 . (B.35)

Define Θ̃ = Θ̄ = Θ1{|Θ| ≤ K}, Ṽ = V̄ = V 1{|V | ≤ K}, Ũ = Ū = U1{|U | ≤ K}, and let µΘ̃,Ṽ , µW̃ ,Ũ
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be the corresponding distributions; namely, µΘ̃,Ṽ is the distribution of (Θ1{|Θ| ≤ K}, V 1{|V | ≤ K})
when (Θ, V ) ∼ µΘ,V , and µW̃ ,Ũ is the distribution of (W1{|W | ≤ M}, A, Z) when (W,U) ∼ µW,U and
(A,Z) ∼ µA ⊗ N(0, 1) independent. Because the Bayes risk converges as K → ∞ to the Bayes risk with
respect to the untruncated prior, we may choose K large enough that also (B.33) holds for these truncated
distributions.

The distributions µΘ̃,Ṽ , µW̃ ,Ũ satisfy assumption R3. We now show that h̃ and W̃ constructed in
this way satisfy assumption R4. The function h̃ is Lipschitz because ĥ is Lipschitz. The random variable
Ỹ := ĥ(x+ ξ1/2A, W̄ ) + ϵ1/2Z has density with respect to Lebesgue measure given by

p(y|x) =
∫ ∫

pξ1/2A (s− x) pN(0,ϵ)(y − ĥ(s, w̄))µW̄ (dw̄)ds,

where pN(0,ϵ) is the density of N(0, ϵ) and pξ1/2A (s− x) the density of ξ1/2A with respect to Lebesgue
measure. We have p(y|x) ≤ supy pN(0,ϵ)(y) = 1/

√
2πϵ, so is bounded, as desired. Moreover∣∣∣∣∣

∫ ∫
∂xpξ1/2A (s− x) pN(0,ϵ)(y − ĥ(s, w̄))µW̄ (dw̄)ds

p(y|x)

∣∣∣∣∣ ≤ sup
s

∣∣∣∣ ṗξ1/2A(s)pξ1/2A(s)

∣∣∣∣ .
Because A has a smoothed Laplace distribution, the right-hand side is finite. Thus, by bounded convergence,
we may exchange differentiation and integration and the preceding display is equal to ∂x log p(y|x). We
conclude that |∂x log p(y|x)| is bounded. The boundededness of all higher derivatives holds similarly. Thus,
R4 holds.

We now generate the appropriate joint distribution over (X,θ,v,u,w,y) and (X, θ̃, ṽ, ũ, w̃, ỹ). First,
generate (X,θ,v,u,w,y) from original the high-dimensional regression model. Then generate a, z indepen-
dent and with entries ai

iid∼ µA and zi
iid∼ N(0, 1). Define θ̃, ṽ, ũ by truncating θ,v,u at threshold K; define

w̃ by truncating w at threshold M to form w̄ and concatenating to it the vectors a, z to form a matrix in
Rn×3; and define ỹ = h̃(Xθ̃, w̃).

All that remains is to show (B.31) holds for the model generated in this way. The bounds on ∥v − ṽ∥2
and ∥u− ũ∥2 hold by the weak law of large numbers and (B.35). To control ∥y − ỹ∥, we bound

∥y − ỹ∥ = ∥h(Xθ,w)− h̃(Xθ̃, w̃)∥
≤ ∥h(Xθ,w)− ĥ(Xθ,w)∥+ ∥ĥ(Xθ,w)− ĥ(Xθ̃,w)∥+ ∥ĥ(Xθ̃,w)− h̃(Xθ̃, w̃)

≤ ∥h(Xθ,w)− ĥ(Xθ,w)∥+ L∥X(θ − θ̃)∥+ Lξ1/2∥a∥+ L∥w − w̄∥+ ϵ1/2∥z∥ .

Because |h(x,w)| ≤ C(1+|x|+|w|) by R2 and ĥ is Lipschitz, there exist C > 0 such that |h(x,w)−ĥ(x,w)| ≤
C(1 + |x|+ |w|). Then, E[(h(τZ,w)− ĥ(τZ,w))2] =

∫
(h(x,w)− ĥ(x,w))2 1√

2πτ
e−

1
2τ2 x

2

dx < C(1 + τ2 +w2)

and is continuous in τ2 for τ > 0 by dominated convergence convergence, and is uniformly continuous for τ
bounded away from 0 and infinity and wi restricted to a compact set. Because xT

i θ|θ ∼ N(0, ∥θ∥2/n) and
∥θ∥2/n p→ τ2Θ/δ, we have that

E[(h(xT
i θ, wi)− ĥ(xT

i θ, wi))
2|θ, wi] = E[(h(τΘxT

i θ/∥θ∥, wi)− ĥ(τΘxT
i θ/∥θ∥, wi))2|θ, wi] + op(1) .

The right-hand side is a constant equal to E[(h(G,W ) − ĥ(G,W ))2] and the left-hand side is uniformly
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integrable. Thus,

lim sup
n→∞

E[(h(xT
i θ, wi)− ĥ(xT

i θ, wi))
2] ≤ E[(h(G,wi)− ĥ(G,wi))2] < ξ .

Markov’s inequality proves the the first convergence in (B.31) because ξ < ϵ. Further, by the weak law of
large numbers

L2

n
∥X(θ − θ̃)∥2 ≤ L2∥X∥2op

n
∥θ − θ̃∥2 p→ L2Cδδ

−1E[Θ21{|Θ| > M}] < Cδϵ ,

where Cδ is the constant satisfying ∥X∥2op
p→ Cδ [191, Theorem 5.31]. Similarly, by the weak law of large

numbers

L2ξ

n
∥a∥2 p→ L2ξ < ϵ,

L2

n
∥w − w̄∥2 p→ L2E[W 21{|W | > M}] < ξ < ϵ,

ϵ

n
∥z∥2 p→ ϵ .

We conclude that
P
(
1

n
∥y − ỹ∥2 > 5(Cδ + 4)ϵ

)
→ 0.

Becuse ϵ was arbitrary, we can in fact achieve (B.31) by considering a smaller ϵ (without affecting the validity
of (B.33)).

This completes the construction. To summarize, we have two models: the first satisfying R1 and R2,
and the second satisfying R3 and R4.

With the construction now complete, we explain why it establishes the reduction. Let τ (ϵ)s , τ̃
(ϵ)
s be the

state evolution parameters generated by (3.5) with µW̃ ,Ũ , µΘ̃,Ṽ , and h̃ in place of µW,U , µΘ,V , and h. First,
we claim that Eqs. (B.33) and (B.34) imply, by induction, that as ϵ→ 0, we have

τ
(ϵ)
t → τt.

Indeed, to show this, we must only establish that E
[
E[G1|h(G,W ) + ϵ1/2Z,G0]

2
]
converges to E[E[G1|h(G,W ), G0]

2]

as ϵ → 0. Without loss of generality, we may assume that on the same probability space there exists
a Brownian motion (Bϵ)ϵ>0 independent of everything else. We see that E[G1|h(G,W ) + ϵ1/2Z,G0]

2]
d
=

E[G1|h(G,W )+Bϵ, G0] = E[G1|(h(G,W )+Bs)s≥ϵ, G0]. By Lévy’s upward theorem [76, Theorem 5.5.7], we
have that E[G1|(h(G,W )+Bs)s≥ϵ, G0] converges to E[G1|(h(G,W )+Bs)s≥0, G0] = E[G1|h(G,W ), G0] almost
surely. By uniform integrability, we conclude that E[E[G1|(h(G,W )+Bs)s≥ϵ, G0]

2]→ E[E[G1|h(G,W ), G0]
2],

as claimed. Thus, we conclude the previous display.
We now show that as ϵ→ 0, we have

inf
θ̂(·)

E[ℓ(Θ̃, θ̂(Θ̃ + τ
(ϵ)
t G,V ))]→ inf

θ̂(·)
E[ℓ(Θ, θ̂(Θ + τtG,V ))] .

Because the truncation level K can be taken to ∞ as ϵ → 0, this holds by combining Lemma B.1.5(a) and
(c), and specifically, Eqs. (B.5) and (B.7).

Because the lower bound of Theorem 3.3.1 holds under assumptions R3 and R4, which are satisfied by
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µW̃ ,Ũ , µΘ̃,Ṽ , and h̃, we conclude that

lim
n→∞

1

p

p∑
j=1

ℓ(θj , θ̂
t
j) ≥ inf

θ̂(·)
E[ℓ(Θ̃, θ̂(Θ̃ + τ

(ϵ)
t G,V ))].

Taking ϵ→ 0 and applying (B.32), we conclude that (3.6) holds for θ̂t, as desired.
The reduction in the high-dimensional regression model is complete.

Proof.[Lemma B.5.1] It is enough to prove the result for τ = 1. Note

E[A|Y = y] =

∫
ae−(y−b)2µ(da,db)∫
e−(y−b)2µ(da,db)

, E[A|Yn = y] =

∫
ae−(y−b)2µn(da,db)∫
e−(y−b)2µn(da,db)

.

Because µn
W→ µ, we have ∫

ae−(y−b)2µn(da,db)∫
e−(y−b)2µn(da,db)

→
∫
ae−(y−b)2µ(da,db)∫
e−(y−b)2µ(da,db)

,

for all y, and moreover, this convergence is uniform on compact sets. Moreover, one can check that the
stated functions are Lipschitz (with uniform Lipschitz constant) in y on compact sets. This implies that
E[A|Yn]→ E[A|Y ] almost surely. Because the E[A|Yn]2 are uniformly integrable, the lemma follows.

B.5.2 From strong to weak assumptions in the low-rank matrix estimation
model

Consider µΛ,U , µΘ,V satisfying M1. FixM > 0. For (Λ,U) ∼ µΛ,U , define Λ̃ by setting Λ̃i = Λi1{|Λi| ≤M}
for 1 ≤ i ≤ k. Define Ũ similarly, and let µΛ̃,Ũ be the distribution of (Λ̃, Ũ) so constructed. Define µΘ̃,Ṽ

similarly.
Consider {(Λi,ui)}i≤n iid∼ µΛ,U and {(θj ,vj)}j≤p iid∼ µΘ,V and Z ∈ Rn×p independent with zij

iid∼
N(0, 1/n). Constructe Λ̃i, ũi, θ̃j , ṽj by truncated each coordinate at level M as above. Define X, X̃ ∈ Rn×p

by xij = 1
nΛ

T
i θj + zij and z̃ij = 1

nΛ̃
T
i θ̃ + zij . As in the previous section, we have for any ϵ > 0 that

P(∥X − X̃∥op > ϵ)→ 0, P
(
1

p
∥v − ṽ∥2 > ϵ

)
→ 0, P

(
1

p
∥u− ũ∥2 > ϵ

)
→ 0.

As in the previous section, this implies that the iterates of the GFOMs before and after the truncation
become arbitrarily close with high probability at a fixed iterate t as we take M →∞.

Further, as M →∞ we have V Θ̃,Ṽ (Q)→ V Θ,V (Q) for all Q, and likewise for Λ̃, Ũ . Further, V Θ̃,Ṽ (Q)

is jointly continuous in Q and M (where M is implicit in the truncation used to generate Θ̃, Ṽ ). Thus,
as we take M → ∞, the state evolution (3.7) after the truncation converges to the state evolution with no
truncation.

The reduction now occurs exactly as in the previous section.
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B.6 Achieving the bound

All that remains to prove Theorems 3.3.1 and 3.3.2 under assumptions A1, A2 and either R1, R2 or M1,
respectively, is to show that the lower bounds in Eqs. (3.6) and (3.8) can be achieved. In both cases, we can
achieve the bound up to tolerance ϵ using a certain AMP algorithm.

B.6.1 Achieving the bound in the high-dimensional regression model

We first derive certain monotonicity properies of the parameters τs, σs, τ̃s defined in the state evolution
recursion (3.5). As we saw in Appendix B.4.1 and in particular, in Lemma B.4.1, the posterior of θv on the
computation tree given observations in the local neighborhood Tv,2s behaves like that from an observation
under Gaussian noise with variance τ2s . This is made precise in Lemma B.4.1. Moreover, we saw in the
same section that a consequence of Lemma B.4.1 is that the asymptotic limiting Bayes risk with respect
to loss ℓ for estimation θv given observations in Tv,2s is given by the corresponding risk for estimating Θ

given Θ + τsG, V with (Θ, V ) ∼ µΘ,V and G ∼ N(0, 1) independent. In particular, this applies to the
minimum mean square error. On the computation tree, minimum mean square error can only decrease as
s grows because as s grows we receive strictly more information. If E[Var(Θ|V )] > 0, then mmseΘ,V (τ2)

is strictly increasing in τ , so that we conclude that τs is non-increasing in s. Thus, by (3.5), we have also
τ̃s is non-increasing in s and σs is non-decreasing in s. In the complementary case that E[Var(Θ|V )] = 0,
we compute σ2

s = τ2Θ/δ and τ̃2s = 0 for all s ≥ 0, and τ2s = 0 for all s ≥ 1. Thus, the same monotoncity
results hold in this case. These monotonicity results will imply the needed structural properties of the state
evolution matrices (Ts,s′), (Σs,s′) used below.

For all s ≤ t, define

αs =
1

τ̃s
E[E[G1|Y,G0, U ]2], Ts,t = E[E[G1|Y,G0, U ]2], Σs,t = σ2

t ,

where Y = h(σsG0 + τ̃sG1,W ) and G0, G1
iid∼ N(0, 1) and W ∼ µW independent. By the monotoncity

properties stated, (Ts,t), (Σs,t) define positive definite arrays. Define

ft(b
t; y, u) = E[B0 −Bt|h(B0,W ) = y, Bt = bt, U = u]/τ̃t,

gt(a
t; v) = E[Θ|V = v, αtΘ+ Zt = at],

where (Θ, V ) ∼ µΘ,V ), (W,U) ∼ µW,U , (B0, . . . , Bt) ∼ N(0,Σ[0:t]), (Z1, . . . , Zt) ∼ N(0,T [1:t]), all indepen-
dent. With these definitions, (Bt, B0−Bt) d

= (σtG0, τ̃tG1) where G0, G1
iid∼ N(0, 1). In particular, (Bt) form

a backwards Gaussian random walk. We thus compute

E[(B0 −Bt)ft(Bt;h(B0,W ), U)]/τ̃2t = E[(E[B0 −Bt|Y,Bt, U ]/τ̃t)
2]/τ̃t = αt,

E[fs(Bs;h(B0,W ), U)ft(B
t;h(B0,W ), U)]

= E[E[B0 −Bs|Y,Bs, U ]E[B0 −Bt|Y,Bt, U ]]/τ̃2t

= E[(B0 −Bt)2|Y,Bt, U ]/τ̃2t = Ts,t,

1

δ
E[Θgt(αtΘ+ Zt;V )] =

1

δ
E[E[Θ|Θ+ Zt/αt, V ]2] = σ2

t ,
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1

δ
E[gs(αsΘ+ Zs;V )gt(αtΘ+ Zt;V )] =

1

δ
E[E[Θ|Θ+ Zt/αt, V ]2].

If ft, gt are Lipschitz, then, because h is also Lipschitz, Stein’s lemma [184] implies that the first line is
equivalent to E[∂B0ft(B

t;h(B0,W ), U)] = αt. (Here, we have used that B0 − Bt is independent of Bt).
Thus, (αs), (Ts,t), (Σs,t) are exactly the state evolution parameters determined by (B.16), and Lemma 3.5.1
implies that AMP with these (fs), (gs) achieves the lower bound.

If the ft, gt are not Lipschitz, we proceed as follows. Fix ϵ > 0. First, pick Lipschitz f̂0 such that
E[(f̂0(B0,W )−f0(B0,W ))2] < ϵ, which is possibly because Lipschitz functions are dense in L2. Define α̂0 and
T̂1,1 via (B.16) with f̂0 in place of f0. Note that limϵ→0 α̂0 = α0 and limϵ→0 T̂1,1 = T1,1. Next, pick Lipschitz
ĝ0 such that E[(ĝ0(α̂0Θ+T̂

1/2
1,1 G;V )−E[Θ|α̂0+Θ+T̂

1/2
1,1 G;V )])2] < ϵ, which is again possibly because Lipschitz

functions are dense in L2. Define Σ̂0,1 = 1
δE[Θĝt(α̂Θ + T̂

1/2
1,1 G;V )] and Σ̂1,1 = 1

δE[ĝt(α̂Θ + T̂
1/2
1,1 G;V )2].

Because as α→ α0 and τ → T
1/2
0,0 , we have E[Θ|αΘ+ τG;V )]

L2→ E[Θ|α0Θ+T
1/2
0,0 G;V )], we conclude that as

ϵ→ 0 that Σ̂0,1 → Σ1,1 and Σ̂1,1 → Σ1,1. Continuing in this way, we are able to by taking ϵ sufficiently small
construct Lipschitz functions (f̂t), (ĝt) which track the state evolutoin of the previous paragraph arbitrarily
closely up to a fixed time t∗. Thus, we may come arbitrarily close to achieving the lower bound of Theorem
3.3.1.

B.6.2 Achieving the bound in the low-rank matrix estimation model

Let γt = Q̂t for t ≥ 0 and αt = Qt, Σt,t = Q̂t, T t,t = Qt for t ≥ 1. Define

ft(b
t;u) = E[Λ|γtΛ+Σ

1/2
t,t G = bt;U ],

gt(a
t;v) = E[Θ|αtΘ+ T

1/2
t,t G = at;V ].

We check that the parameters so defined satisfy the AMP state evolution (B.17). Note that by (3.7),

T t+1,t+1 = Qt+1 = E[E[Λ|Q̂1/2
t Λ+G;U ]E[Λ|Q̂1/2

t Λ+G;U ]T]

= E[E[Λ|Q̂tΛ+ Q̂
1/2
t G;U ]E[Λ|Q̂tΛ+ Q̂

1/2
t G;U ]T]

= E[E[Λ|γtΛ+Σ
1/2
t,t G;U ]E[Λ|γtΛ+Σ

1/2
t,t G;U ]T],

αt+1 = E[E[Λ|Q̂1/2
t Λ+G;U ]E[Λ|Q̂1/2

t Λ+G;U ]T]

= E[E[Λ|γtΛ+Σ
1/2
t,t G;U ]ΛT]

where (Θ,V ) ∼ µΘ,V and (Λ,U) ∼ µΛ,U . The state evolution equations (3.7) for Σt,t and γt hold similarly.
If ft, gt so defined are Lipschitz, then (αs), (T s,t), (Σs,t) are exactly the state evolution parameters

determined by (B.16), and Lemma 3.5.1 implies that AMP with these (fs), (gs) achieves the lower bound.
If the ft, gt so defined are not Lipschitz, then the same strategy used in the previous section allows us to
achieve the lower bound within tolerance ϵ > 0.
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B.7 Proofs for sparse phase retrieval and sparse PCA

B.7.1 Proof of Lemma 3.4.1

Note that ∥θ0∥2 is tightly concentrated around µ2ε. As a consequence, we can replace the side information
v by v =

√
α̃θ0 + g. We apply Theorem 3.3.2 with r = 1, and loss ℓλ(θ, θ̂) = (θ̂ − θ0/λ)2, where λ ∈ R≥0

will be adjusted below. Setting Qt = qt, Q̂t = q̂t, we obtain the iteration

qt+1 =
q̂t

1 + q̂t
, q̂t =

1

δ
E
{
E[
√
δΘ0|(δqt)1/2Θ0 +G;V ]2

}
, (B.36)

where Θ0 ∼ µθ,and V =
√
δα̃ + G′, G′ ∼ N(0, 1). Notice that the additional factors

√
δ are due to the

different normalization of the vector θ0 with respect to the statement in Theorem 3.3.2. Also note that the
second moment of the conditional expectation bove is equal to E

{
E[
√
δΘ0|(δ(qt + α̃))1/2Θ0 + G]2

}
and a

simple calculation yields

q̂t+1 = V±(qt + α̃) , qt =
q̂t

1 + q̂t
, (B.37)

which is equivalent to Eqs. (3.12), (3.13).
Let Y =

√
δ(qt + α̃)Θ0 +G, G ∼ N(0, 1). Theorem 3.3.2 then yields

1

p
∥θ̂t − θ0/λ∥22 ≥ inf

θ̂( · )
E
{(
θ̂(Y )−Θ0/λ

)2}
+ op(1) (B.38)

=
1

λ2
E
{(

E(Θ0|Y )−Θ0

)2}
+ op(1) . (B.39)

In order to prove the upper bound (3.14), it is sufficient to consider ∥θ̂t∥22 ≤ p. Then, for any λ ≥ 0,

1

p
⟨θ̂t,θ0⟩ ≤

1

p
⟨θ̂t,θ0⟩ −

λ

2p
(∥θ̂t∥22 − p) (B.40)

=
λ

2
+

1

2λp
∥θ0∥22 −

λ

2p
∥θ̂t − θ0/λ∥22 (B.41)

≤ λ

2
+

1

2λ
E{Θ2

0} −
1

2λ
E
{(

E(Θ0|Y )−Θ0

)2}
+ o(1) (B.42)

≤ λ

2
+

1

2λ
V±(qt + α̃) + o(1) . (B.43)

The claim follows by choosing λ = V±(qt + α̃)1/2, and noting that ∥θ0∥22/p→ µ2ε, almost surely.

B.7.2 Proof of Corollary 3.4.2

Choose µ = R/
√
ε, and let µ′ < µ, ε′ < ε, R′ = µ′

√
ε′. Draw the coordinates of θ0 = θ0

√
p according to the

three points distribution with parameters µ′, ε′. Then, with probability one, we have θ0 ∈ T (ε,R) for all n
large enough. Applying Lemma 3.4.1, we get

lim
n→∞

inf
θ0∈T (ε,R)

E

{
⟨θ0, θ̂

t⟩
∥θ0∥2∥θ̂t∥2

}
≤
√
V±(q′t + α̃′)

(µ′)2ε′
, (B.44)
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ahere we used dominated convergence to pass from the limit in probability to limit in expectation, and q′t, α̃′

are computed with parameters µ′, ε′. By letting ε′ → ε, µ′ → µ, and since α̃′, q′t are continuous in these
parameters by an induction argument, Eq. (B.44) also holds with µ′, ε′, q′t replaced by µ, ε, qt:

lim
n→∞

inf
θ0∈T (ε,R)

E

{
⟨θ0, θ̂

t⟩
∥θ0∥2∥θ̂t∥2

}
≤
√
V±(qt + α̃)

µ2ε
, (B.45)

Claims (a) and (b) follow by upper bounding the right-hand side of the last equation.
First notice that V±(q) = µ4ε2δ q +O(q2) and hence Eqs. (3.12), (3.13) imply that, for any η > 0 there

exists q∗ > 0 such that, if qt + α̃ ≤ q∗, then

qt+1 ≤ (µ4ε2δ + η)(qt + α̃) . (B.46)

If µ4ε2δ < 1, choosing η = (1 − µ4ε2δ)/2, this inequality implies qt ≤ 2α̃/(1 − µ4ε2δ), which proves claim
(a).

For the second claim, we use the bounds e−δqµ
2/2 cosh(µ

√
δqG) ≥ 0 and x/(1 + x) ≤ x in Eq. (3.13) to

get qt ≤ qt for all t, where q0 = 0 and

qt+1 = F0(qt + α̃) , F0(q) :=
µ2ε2

1− ε sinh(µ
2δq) . (B.47)

Further Eq. (B.45) implies

lim
n→∞

inf
θ0∈T (ε,R)

E

{
⟨θ0, θ̂

t⟩
∥θ0∥2∥θ̂t∥2

}
≤
√
qt+1

µ2ε
. (B.48)

Define xt := µ2δqt, a := µ4ε2δ/(1− ε), b := µ2δα̃ = (δ/ε)(α/(1− α)). Then xt obeys the recursion

xt+1 = a sinh(xt + b) . (B.49)

Since a = R4δ/(1− ε), we know that a < 1/4. Using the fact that sinh(u) ≤ 2u for u ≤ 1, this implies xt ≤ b
for all t provided b < 1/2. Subsitiuting this bound in Eq. (B.48), we obtain the desired claim.

B.7.3 Proof of Corollary 3.4.1

Consider first the case of a random vector θ0 with i.i.d. entries θ0,i ∼ µθ. Define, for Θ0 ∼ µθ,

Fε(q) := E
{
E[Θ0|

√
qΘ0 +G]2

}
(B.50)

= e−qµ
2

µ2ε2E
{

sinh(µ
√
qG)2

1− ε+ εe−qµ2/2 cosh(µ
√
qG)

}
. (B.51)

Setting qt = τ−2
t , q̂t = σ2

t , and α̃ = α/(1 − α), and referring to Lemma B.1.4, the state evolution recursion
(3.5) takes the form

q̂t = Fε(qt + α̃) , qt+1 = δ H(q̂t) , (B.52)
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H(q) := EG0,Y

[(
EG1

∂xp(Y |√q G0 +
√
1− qG1)

EG1
p(Y |√q G0 +

√
1− qG1

)2
]
. (B.53)

Notice the change in factors δ with respect to Eq. (3.5), which is due to the different normalization of the
design matrix.

By the same argument used in the proof of Lemma 3.4.1, Theorem 3.3.1 implies that, for any GFOM,
with output θ̂t, we have

lim
n,p→∞

E
⟨θ0, θ̂

t⟩
∥θ0∥2∥θ̂t∥2

≤
√
q̂t . (B.54)

We next compute the first order Taylor-expansion of the iteration (B.52), and obtain Fε(q) = q + O(q2),
H(q) = q/δsp + O(q2) (the first order Taylor expanson of H(q) was already computed in [146]). As a
consequence, for any η > 0, there exists α0 such that, if α̃ < α0, qt < α0, then

qt+1 ≤ (
δ

δsp
+ η)(qt + α̃) .

The claim follows by taking η = η(δ) := (δsp − δ)/(2δsp), whence qt ≤ α̃/η(δ) for all t, provided α̃ < α∗ :=

α0η(δ). The deterministic argument follows in the same way as Corollary 3.4.2.



Appendix C

A proof for GFOM via orthogonalization

C.1 Proof of Theorem 4.3.1 under Setting 1

In this section we prove Theorem 4.3.1 in the context of Setting 1. Therefore, Ft, Gt, F
(t)
∗ are non-separable,

namely they do not necessarily act on vectors entrywise.
Before we proceed, we first generalize the definition of pseudo-Lipschitz functions given in the main

text. For any m, l, k ∈ N>0, a function ϕ : Rl → Rm is called a pseudo-Lipschitz function of order k if there
exists a constant L > 0, such that for any x,y ∈ Rl,

1√
m
∥ϕ(x)− ϕ(y)∥2 ≤L

(
1 +

(∥x∥2√
l

)k−1

+

(∥y∥2√
l

)k−1
)
∥x− y∥2√

l
, (C.1)

1√
m
∥ϕ(x)∥2 ≤L

(
1 +

(∥x∥2√
l

)k)
. (C.2)

In what follows, we will often consider sequences of functions ϕn : Rln → Rmn indexed by n (even if we
often do not write explicitly that we are considering a sequence). We say that such a sequence {ϕn}n≥1 is
uniformly pseudo-Lipschitz of order k if Eqs. (C.1), (C.2) hold with L a constant that is independent of n.

C.1.1 Approximate message passing algorithms

As before, the first step is to define the AMP algorithm for this setting. An AMP algorithm is defined
by Lipschitz non-linearities {ft : Rn(t+1) → Rn}t≥0, and produces vectors {at}t≥1 ⊆ Rn via the following
iteration:

at+1 = Xft(a
≤t;u)−

t∑
s=1

bt,sfs−1(a
≤s−1;u). (C.3)

For each t ∈ N, ft stands for a sequence of functions which are uniformly Lipschitz continuous. As before, we
introduce the notation OCAMP(a

≤t−1;u) :=
∑t
s=1 bt,sfs−1(a

≤s−1;u). Under Setting 1, the state evolution

173



APPENDIX C. A PROOF FOR GFOM VIA ORTHOGONALIZATION 174

recursion to construct µ = (µt)t≥1 and Σ = (Σs,t)s,t≥1 is defined as follows:

µt+1 = lim
n→∞

1

n
E[θTft(µ≤tθ + g≤t;u)] ,

Σs+1,t+1 = lim
n→∞

1

n
E[fs(µ≤sθ + g≤s;u)

Tft(µ≤tθ + g≤t;u)] ,

g≤t :=(g1, · · · , gt) ∼ N(0,Σ≤t ⊗ In) ,

(C.4)

where we adopted the notation µ≤tθ+g≤t := (µ1θ+g1, · · · , µtθ+gt) and we assume the above limits exist.
Given µ and Σ, we define

bt,s =
1

n

n∑
i=1

E[∂i,sft,i(µ≤tθ + g≤t;u)], (C.5)

where ft,i is the i-th coordinate of ft, and ∂i,s denotes the weak derivative with respect to the s-th variable
of the i-th row of the input matrix. To give an example, for variables x1, · · · ,xt ∈ Rn and a function
f(x1, · · · ,xt) mapping from Rnt to R, we have ∂i,sf(x1, · · · ,xt) = ∂(xs)if(x1, · · · ,xt). Notice that here bt,s
depends on n. Since ft is uniformly Lipschitz in terms of n, for all t, s ∈ N>0, bt,s is uniformly bounded as
a sequence in n.

After t iterations as in Eq. (C.3), the AMP algorithm estimates θ by applying a uniformly Lipschitz
function f∗t : Rn(t+1) → Rn to (a≤t,u):

θ̂(X,u) = f∗t (a
≤t;u).

The following theorem characterizes the asymptotic performance of the AMP algorithm (C.3).

Theorem C.1.1. Assume that {(θi, ui)}i≤n iid∼ µΘ,U , and W satisfies the same assumption as W under
Setting 1. For all t ∈ N, assume ft is uniformly Lipschitz. Furthermore, we assume the limits

lim
n→∞

1

n
E[θTft(µ≤tθ + g≤t;u)],

lim
n→∞

1

n
E[fs(µ≤sθ + g≤s;u)

Tft(µ≤tθ + g≤t;u)],

lim
n→∞

1

n
E[θTf∗t (µ≤tθ + g≤t;u)],

lim
n→∞

1

n
E[f∗s (µ≤sθ + g≤s;u)

Tf∗t (µ≤tθ + g≤t;u)]

exist for all n-independent (µ,Σ) and t, s ∈ N. Then, for any t ∈ N>0 and {ψn : Rn(t+1) → R}n≥1 uniformly
pseudo-Lipschitz of order 2,

p-lim
n→∞

∣∣∣ψn(a≤t;u)− E[ψn(µ≤tθ + g≤t;u)]
∣∣∣ = 0 .

Remark C.1.1. Theorem C.1.1 is a generalized version of [33, Theorem 1]. In [33] the non-linearity ft only
depends on (at,u), while here we allow it to depend on all previous iterates (a≤t,u).

This generalization can be conducted through the following steps: (1) Replace the vectors ft(at;u),at ∈
Rn by matrices ft(at;u),at ∈ Rn×q, and replace the coefficients for the Onsager correction term bt,t by q×q
matrices (see, e.g., [104]). Such generalization follows exactly by the same proof as in [33]. (2) Fix a time
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horizon t, and choose an n-independent q such that q ≥ t. With initialization x0
1 = · · · = x0

q = 0, we set the
non-linearity corresponding to the (s+ 1)-th iteration as

(xs1, · · · ,xsq,u) 7→ (f0(u), · · · , fs(xs1, · · · ,xss;u),0, · · · ,0) ∈ Rn×q.

In this way, the vectors (xts)1≤s≤t coincides with (as)1≤s≤t.

C.1.2 Any GFOM can be reduced to an AMP algorithm

In this section we show that, under Setting 1, any GFOM can be reduced to an AMP algorithm via a change
of variables.

Lemma C.1.1. Under the assumptions of Setting 1, for all t ∈ N>0, there exist uniformly Lipschitz functions
φt : Rn(t+1) → Rnt and ft−1 : Rnt → Rn that are independent of (θ,u,W ), such that the following holds.
Let {at}t≥1 be the sequence of vectors produced by the AMP iteration (C.3) with non-linearities {fs}s≥0,
then for any t ∈ N>0, we have

u≤t = φt(a
≤t;u), ft−1(a

≤t−1;u) = Ft−1(φt(a
≤t−1;u);u).

Furthermore, {φt}t≥1 satisfies the following conditions. Let (µ,Σ) be the state evolution of the AMP al-
gorithm defined in Eq. (C.4). For any t ∈ N>0, there exist uniformly bounded numbers (bij)1≤i,j≤t (which
depend on n), such that for y≤t defined in Eq. (4.7), we have y≤t = φt(µ≤tθ + g≤t;u).

Proof. We prove the lemma by induction over t. For the base case t = 1, we may simply take f0(u) = F0(u)

and φ1(a
1;u) := a1 +G0(u). Then y1 = φ1(µ1θ + g1;u) by definition.

Suppose the claim holds for the first t iterations, then we prove it holds for the (t+ 1)-th iteration. By
the induction hypothesis,

ut+1 = XFt(φt(a
≤t;u);u) +Gt(φt(a

≤t;u);u).

Let ft(x≤t;u) = Ft(φt(x
≤t;u);u). The composite of uniformly Lipschitz functions is still uniformly Lips-

chitz, thus, we conclude that ft is uniformly Lipschitz. Based on the choice of {fs}0≤s≤t, we compute the
coefficients for the Onsager correction term {bt,s}1≤s≤t according to Eq. (C.5). Then we define at+1 via
Eq. (C.3), which gives

at+1 = ut+1 −Gt((φt(a≤t;u);u)−
t∑

s=1

bt,sfs−1(a
s−1;u).

Therefore, we define φt+1 as

φt+1(a
≤t+1;u) = (φt(a

≤t;u);at+1 +Gt(φt(a
≤t;u);u) +

t∑
s=1

bt,sfs−1(a
≤s−1;u)).

By induction hypothesis and the fact that bt,s is uniformly bounded with respect to n for all fixed t, s ∈ N>0,
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we have that φt+1 is uniformly Lipschitz. Furthermore,

φt+1(µ≤t+1θ + g≤t+1;u)

=(φt(µ≤tθ + g≤t;u), µt+1θ + gt+1 +Gt(φt(µ≤tθ + g≤t;u);u) +

t∑
s=1

bt,sfs−1(µ≤s−1θ + g≤s−1;u))

=(y≤t,yt+1),

thus completes the proof of the lemma by induction.

The next lemma enables us to check the conditions of Theorem C.1.1.

Lemma C.1.2. Under the assumptions of Setting 1, let {ft−1, φt}t∈N+ be the functions defined in Lemma
C.1.1. For any µ = (µi)i≥1, Σ = (Σij)i,j≥1 ⪰ 0, let (gt)t>0 be a centered Gaussian process with covariance
E{gsgT

t } = Σs,tIn. Then, for any t ∈ N and any infinite subsequence S ⊆ N>0 there exists a further
subsequence S ′ ⊆ S along which the following limits exist for all 0 ≤ s ≤ r ≤ t:

lim
n→∞;n∈S′

1

n
E[fr(µ≤rθ + g≤r;u)

Tfs(µ≤sθ + g≤s;u)],

lim
n→∞;n∈S′

1

n
E[θTfs(µ≤sθ + g≤s;u)],

lim
n→∞;n∈S′

1

n
E[F (r)

∗ (φr(µ≤rθ + g≤r;u);u)
TF

(s)
∗ (φs(µ≤sθ + g≤s;u);u)],

lim
n→∞;n∈S′

1

n
E[θTF

(s)
∗ (φs(µ≤sθ + g≤s;u);u)].

(C.6)

Proof. We can assume that the subsequence S does coincide with the whole sequence, i.e. S = N>0, as the
general case follows by a simple change of notations.

Fix t ∈ N. Since (bi,j)1≤i,j≤t are uniformly bounded, there exists a subsequence {nk}k>0 of N>0, such
that for all 1 ≤ s, r ≤ t, bs,r converges to limit b∗s,r. Suppose we replace (bi,j)1≤i,j≤t with (b∗i,j)1≤i,j≤t in
Eq. (4.7), and we denote the resulting vectors by (y∗

t )t≥1. It follows by induction and using the uniform
Lipschitz property that for all 0 ≤ s, r ≤ t, along {nk}k>0,

1

n
Fr(y

∗
≤r;u)

TFs(y
∗
≤s;u)−

1

n
Fr(y≤r;u)

TFs(y≤s;u)
P→ 0,

1

n
F

(r)
∗ (y∗

≤r;u)
TF

(s)
∗ (y∗

≤s;u)−
1

n
F

(r)
∗ (y≤r;u)

TF
(s)
∗ (y≤s;u)

P→ 0,

1

n
θTFs(y

∗
≤s;u)−

1

n
θTFs(y≤s;u)

P→ 0.

1

n
θTF

(s)
∗ (y∗

≤s;u)−
1

n
θTF

(s)
∗ (y≤s;u)

P→ 0.

By the third assumption of Setting 1, the limits of Fr(y∗
≤r;u)

TFs(y
∗
≤s;u)/n, F (r)

∗ (y∗
≤r;u)

TF
(s)
∗ (y∗

≤s;u)/n,
θTF

(s)
∗ (y∗

≤s;u)/n and θTFs(y
∗
≤s;u)/n exist in probability as n, d → ∞. Combining these results and the

results of Lemma C.1.1, we conclude that the limits of Eqs. (C.6) exist along {nk}k∈N>0 :
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The following corollary is an immediate consequence of Lemma C.1.1.

Corollary C.1.1. Under the assumptions of Setting 1, let AtGFOM(L) be the class of GFOM estimators
with t iterations and uniform Lipschitz constant L, and AtAMP(L

′) be the class of AMP algorithms with t

iterations and uniform Lipschitz constant L′. Then for any L < ∞ there exist L′ < ∞ (independent of n),
such that the following holds. For any z ∈ R and any loss function L : Rn × Rn → R≥0:

inf
θ̂(·)∈At

GFOM(L)
P
(
L(θ̂(X,u),θ) ≤ z

)
≤ inf

θ̂(·)∈At
AMP(L′)

P
(
L(θ̂(X,u),θ) ≤ z

)
.

Notice that in this corollary θ̂( · ) ∈ AtGFOM(L) is (implicitly) a sequence of estimators indexed by n,
which is uniformly Lipschitz with constant L. The corollary also implies an asymptotic statement. Namely,
write AtGFOM := ∪L≥1AtGFOM(L) for the class of (sequences of) GFOM estimators with t iterations and any
uniform Lipschitz constant L, and similarly for AtAMP. Then we have

inf
θ̂(·)∈At

GFOM

p-liminf
n→∞

L(θ̂(X,u),θ) = inf
θ̂(·)∈At

AMP

p-liminf
n→∞

L(θ̂(X,u),θ) . (C.7)

Here equality holds because AtAMP ⊆ AtGFOM.

C.1.3 Any AMP algorithm can be reduced to an orthogonal AMP algorithm

By Corollary C.1.1, and in particular Eq. (C.7), we can limit ourselves to lower-bounding the error of AMP
algorithms. By Lemma C.1.2 we can assume —possibly taking subsequences— that such algorithm satisfies
the conditions of Theorem C.1.1. To simplify notations, we will assume hereafter that these conditions are
satisfied along n ∈ N. There is no loss of generality in this.

Here we show that it is in fact sufficient to lower bound the error for OAMP algorithms.

Lemma C.1.3. Let {at}t≥1 be a sequence generated by the AMP iteration (C.3) under the conditions
of Theorem C.1.1. Then for all t ∈ N+, there exist uniformly Lipschitz functions ϕt : Rn(t+1) → Rnt,
gt−1 : Rnt → Rn such that the following holds. Let {vt}t≥1 be the sequence of vectors produced by AMP
iteration with non-linearities {gt}t≥0 (and the same matrix X as for {at}t≥1). Namely,

vt+1 = Xgt(v
≤t;u)−

t∑
s=1

b′t,sgs−1(v
≤s−1;u) (C.8)

with deterministic coefficients (b′t,s) determinied by the analogous of Eq. (C.5), with ft replaced by gt. Then
we have

(i) For all t ∈ N>0, a≤t = ϕt(v
≤t;u). Further, there exists n-independent constants {cts}0≤s≤t, such that

we can write vt =
∑t−1
s=0 ct−1,sa

s+1.

(ii) For all t ∈ N>0, there exist (x0, · · · , xt−1) ∈ {0, 1}t and (α1, · · · , αt) ∈ Rt, such that for any {ψn :

Rn(t+2) → R}n≥1 uniformly pseudo-Lipschitz of order 2,

ψn(v
≤t,θ,u) = E[ψn(ν≤t,θ,u)] + oP (1),

where νi = xi−1(αiθ + zi) and {zi}i≥1
iid∼ N(0, In) independent of (θ,u).
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Proof. Recall that, as in the proof of Lemma 4.4.2, ΠS denotes the orthogonal projection onto the closed
linear subspace S ⊆ L2(P), and Π⊥

S := I −ΠS .
We denote by (µt)t≥1, (Σs,t)s,t≥1 the state evolution sequence corresponding to {at}t≥1, defined via

Eq. (C.4). Let (gt)t≥1 be a centered Gaussian process in Rn such that Cov(gs, gt) = Σs,tIn. We define the
following random vectors and subspaces:

ht = ft(µ≤tθ + g≤t;u), St = span(hk : 0 ≤ k ≤ t).

By assumption, for all s, t ∈ N,

1

n
E⟨hs,ht⟩ → Σs+1,t+1,

1

n
E⟨θ,ht⟩ → µt+1. (C.9)

By linear algebra, there exist deterministic n-independent constants {cts}t,s∈N, {xt}t∈N ∈ {0, 1}N, such that
ctt ̸= 0 and

t∑
i=0

s∑
j=0

cticsjΣi+1,j+1 = 1s=txt.

If we let rt =
∑t
s=0 ctshs, then by the convergence of second moments given in Eq. (C.9), for all s, t ∈ N

lim
n→∞

1

n
E⟨rt, rs⟩ = 1s=txt.

Then we prove the lemma by induction. For the base case t = 1, we let g0(u) = c00f0(u), thus v1 = c00a
1

and claim (i) follows trivially. As for claim (ii), first notice that the limits exist for both E⟨g0(u), g0(u)⟩/n
and E⟨g0(u),θ⟩/n by the assumption on the original AMP iteration. Then we consider two cases. In the first
case x0 = 0, thus Σ11 = 0, µ2

1 ≤ c−2
00 E[∥θ∥22/n]E[∥g0(u)∥22/n] → 0, and (ii) holds with ν1 = 0 by Theorem

C.1.1. In the second case x0 = 1, whence c00 = Σ
−1/2
11 , and claim (ii) again follows from state evolution.

Furthermore,

α1 = lim
n→∞

E[⟨f0(u),θ⟩]√
nE[⟨f0(u), f0(u)⟩]1/2

. (C.10)

Suppose the lemma holds for the first t iterations. We prove it also holds for the (t+1)-th iteration. We let

gt(v
≤t;u) =

t∑
s=0

ctsfs(ϕs(v
≤s;u);u).

By induction hypothesis and assumptions, gt is uniformly Lipschitz. Given {gs}0≤s≤t, we can derive the
coefficients (b′s,j)1≤j≤s≤t via Eq. (C.5), and we denote the Onsager correction term of this new AMP iteration
by OCtOAMP(v

≤t−1;u) =
∑t
s=1 b

′
t,sgs−1(v

≤s−1;u). Then Eq. (C.8) can be rewritten as

vt+1 =

t∑
s=0

ctsXfs(ϕs(v
≤s;u);u)− OCtOAMP(v

≤t−1;u).
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Plugging in the AMP iteration that defines {at}t≥1, we have

vt+1 =

t∑
s=0

cts(a
s+1 + OCsAMP(a

≤s−1;u))− OCtOAMP(v
≤t−1;u). (C.11)

Recall that ctt is non-vanishing, thus, we can solve for at+1 and express a≤t+1 as a function of (v≤t+1;u). We
denote this function by ϕt+1. By induction hypothesis, ϕt+1 is uniformly Lipschitz. Plugging the definition
of OCsAMP and OCtOAMP into Eq. (C.11) gives

vt+1 =

t∑
s=0

ctsa
s+1 +

t∑
i=1

( t∑
s=i

ctsbsi −
t∑
s=i

b′tscs−1,i−1

)
fi−1(a

≤i−1;u). (C.12)

By induction hypothesis, gt(c00x1, · · · ,∑t−1
s=0 ct−1,sx

s+1;u) =
∑t
s=0 ctsfs(x

≤s;u). Taking the gradient on
both sides with respect to xi, then compute the expected average of the coordinates of the gradient with
respect to the distribution x≤t d

= µ≤tθ + g≤t gives
∑t
s=i ctsbsi −

∑t
s=i b

′
tscs−1,i−1 = 0. Plugging this into

Eq. (C.12) finishes the proof of claim (i).
One can verify that the non-linearities {gs}0≤s≤t defined in this way satisfy the conditions of Theorem

C.1.1, thus the asymptotics of OAMP can be characterized by state evolution. As for the proof of claim
(ii), again we consider two cases. If xt = 0, then E⟨rt, rt⟩/n → 0, and E⟨rt,θ⟩/n → 0. Using the state
evolution for OAMP (C.8), we obtain that (ii) holds with νt+1 = 0. If xt = 1, then again by state evolution
for OAMP, claim (ii) holds with νt+1 = αt+1θ + zt+1 where

αt+1 = lim
n→∞

E⟨θ,Π⊥
St−1

(ht)⟩√
nE[⟨Π⊥

St−1
(ht),Π⊥

St−1
(ht)⟩]1/2

, (C.13)

thus completes the proof by induction.

C.1.4 Optimal orthogonal AMP

Following the same reasoning of Remark 4.4.3, in the following we will restrict to the cases in which xt = 1

for all t ∈ N.
Combining Lemma C.1.1 and C.1.3, we conclude that it is sufficient to lower bound the error of OAMP

algorithms. The following corollary is a direct consequence of the proceeding results, and extends Eq. (C.7).

Corollary C.1.2. Under the assumptions of Setting 1, recall that AtGFOM denotes the class of uniformly
Lipschitz GFOM estimators with t iterations, and denote by AtOAMP the class of OAMP estimators with t

iterations (i.e., AMP estimators whose state evolution yields Σs,t = 1s=t).
Then we have

inf
θ̂( · )∈At

GFOM

p-liminf
n→∞

1

n

∥∥θ̂(X,u)− θ
∥∥2
2
= inf

θ̂( · )∈At
OAMP

p-liminf
n→∞

∥∥θ̂(X,u)− θ
∥∥2
2
. (C.14)

Notice that a sufficient statistics for θ given α≤tθ + z≤t is T0 := ∥α≤t∥sθ + z with z
d
= N(⃗0, In)

independent of θ. Therefore, in order to derive the minimum of the right hand side of Eq. (C.14), it is
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sufficient to compute the maximum value of ∥α≤t∥2, which is provided by the following lemma. The proof
of Theorem 4.3.1 under Setting 1 directly follows.

Lemma C.1.4. Recall that (γs)s≥0 is defined in Eq. (4.8). Then, for all t ∈ N and all choice of non-
linearities g0, · · · , gt, we have ∥α≤t∥2 ≤ γt.

Proof. The proof is by induction over t. For the base case t = 1, notice that

sup
f0

E[⟨f0(u),θ⟩]2
nE[⟨f0(u), f0(u)⟩]

=
E[⟨f0(u),E[θ | u]⟩]2
nE[⟨f0(u), f0(u)⟩]

≤ γ21 .

The last step above is via application of Cauchy-Schwarz inequality. Then the base case holds by taking the
limit n→∞ in Eq. (C.10).

We assume that the claim holds for the first t iterations, and we prove by induction that it also holds
for iteration t+ 1. We let θ̂t := E[θ | r1, · · · , rt,u], then

E[⟨θ,Π⊥
St−1

(ht)⟩]2
nE[⟨Π⊥

St−1
(ht),Π⊥

St−1
(ht)⟩]

=
E[⟨θ̂t,Π⊥

St−1
(ht)⟩]2

nE[⟨Π⊥
St−1

(ht),Π⊥
St−1

(yt)⟩]
(a)

≤ 1

n
E[∥Π⊥

St−1
(θ̂t)∥22]

(b)
=

1

n
E[∥θ̂t∥22]−

1

n
E[∥ΠSt−1

(θ̂t)∥22],

where (a) follows from Cauchy-Schwartz inequality and (b) from Pythagora’s theorem. Notice that

{ΠSs−1
(hs)/E[∥ΠSs−1

(hs)∥22]1/2 : 0 ≤ s ≤ t− 1}

is an orthonormal basis for St−1, thus,

E[⟨θ,Π⊥
St−1

(ht)⟩]2
nE[⟨Π⊥

St−1
(ht),Π⊥

St−1
(ht)⟩]

≤ 1

n
E[∥θ̂t∥22]−

t−1∑
s=0

E[⟨θ,Π⊥
Ss−1

(hs)⟩]2
nE[∥Π⊥

Ss−1
(hs)∥22]

.

Taking the limits on both sides of the above inequality gives α2
t+1 ≤ E[∥θ̂t∥22]/n−

∑t
s=1 α

2
s. By induction,

1

n
E[∥θ̂t∥22] =

1

n
E[∥E[θ | r1, · · · , rt,u]∥22]

(a)
=

1

n
E[∥E[θ | ∥α≤t∥2θ + z,u]∥22]

(b)

≤ 1

n
E[∥E[θ | γtθ + z,u]∥22]

(c)
=γ2t+1,

where (a) follows because T0 is a sufficient statistics for θ, (b) is by induction hypothesis and Jensen’s
inequality, and (c) is by the definition of γt+1. This concludes the proof of the lemma.
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C.2 Proof of Theorem 4.5.1 under Setting 4

In this section we prove Theorem 4.5.1 under the assumptions of Setting 4. As in Section 4.4 in the main
text, we will additionally assume X has sub-Gaussian entries, and relax this assumption in Appendix C.4.
Namely, in this section we assume E[exp(λXij)] ≤ exp(Cλ2/n) for all i ∈ [n], j ∈ [d] and some n-independent
constant C.

C.2.1 AMP algorithm

As before, the first step of our proof is to define the class of AMP algorithms for the current setting. An
AMP algorithm for solving generalized linear models under Setting 4 is defined by a sequence of continuous
functions (also known as the non-linearities) {ft : Rt+2 → R}t≥0 and {gt : Rt+1 → R}t≥1, and produces
vectors {bt}t≥1 ⊆ Rd and {at}t≥1 ⊆ Rn via the following iteration:

bt+1 = XTft(a
≤t;y,u)−

t∑
s=1

ξt,sgs(b
≤s;v),

at = Xgt(b
≤t;v)−

t∑
s=1

ηt,sfs−1(a
≤s−1;y,u).

(C.15)

As before, non-linearities are applied entrywise. We denote the Onsager terms by

OCtAMP(a
≤t−1;y,u) :=

t∑
s=1

ηt,sfs−1(a
≤s−1;y,u),

OCt+1
AMP(b

≤t;v) :=

t∑
s=1

ξt,sgs(b
≤s;v).

The coefficients (ξt,s)1≤s≤t and (ηt,s)1≤s≤t are deterministic, defined via:

ξt,s = E
[
∂sft(Ḡ≤t;Y, U)

]
, Y := h(Ḡ0,W )

ηt,s =
1

δ
E
[
∂sgt(µ≤tΘ+G≤t;V )

]
,

(C.16)

where we use the notations Ḡ≤t := (Ḡ1, · · · , Ḡt), G≤t := (G1, · · · , Gt), the joint distributions of (Ḡ≤t, Y, U)

and of (G≤t,Θ, V ) is defined via the following state evolution recursion

(Ḡ0, Ḡt) ∼ N(0t+1, Σ̄≤t), G≤t ∼ N(0t,Σ≤t),

Σ̄ij =
1

δ
E[gi(µ≤iΘ+G≤i;V )gj(µ≤jΘ+G≤j ;V )], i, j ≥ 1,

Σ̄i0 = Σ̄0i =
1

δ
E[gi(µ≤iΘ+G≤i;V )Θ], Σ̄00 =

1

δ
E[Θ2], i ≥ 1,

Σij = E[fi−1(Ḡ≤i−1;Y, U)fj−1(Ḡ≤j−1;Y, U)], i, j ≥ 1,

µt+1 = E
[
∂Ḡ0

ft(Ḡ≤t;Y, U)
]
.

(C.17)

Here it is understood that (Θ, V ) ∼ µΘ,V is independent of (Gi)i≥1 and (W,U) ∼ µW,U is independent of
(Ḡi)i≥0. Further, Σ̄≤t = (Σ̄ij)0≤i,j≤t, Σ≤t = (Σij)1≤i,j≤t and µ≤t = (µi)1≤i≤t. Here, ∂s refers to the partial
derivative with respect to the s-th variable, and ∂Ḡ0

refers to the partial derivative with respect to Ḡ0. To
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be precise, ∂Ḡ0
ft(x≤t;h(x0, w), u) = ∂x0ft(x≤t;h(x0, w), u). Note that f0 depends only on (Y,U). Thus,

the above recursion does not need any specific initialization. After t iterations as in Eq. (C.15), the AMP
algorithm estimates θ by applying a Lipschitz function g∗t : Rt+1 → R row-wise to (b≤t,v):

θ̂(X,y,u,v) = g∗t (b
≤t;v).

The following theorem characterizes the asymptotic performance of the AMP iteration (C.15):

Theorem C.2.1. Assume the matrix X and non-linearities (ft, gt) satisfy the same assumptions as X and
(F

(1)
t , G

(1)
t ) under either Setting 4.(a) or Setting 4.(b). Then for any t ∈ N>0, and any ψ : Rt+2 → R

pseudo-Lipschitz of order 2, the AMP iteration (C.15) satisfies

p-lim
n,d→∞

1

d

d∑
i=1

ψ(b≤ti , θi, vi) = E[ψ(µ≤tΘ+G≤t,Θ, V )], G≤t ∼ N(0,Σ≤t).

C.2.2 Any GFOM can be reduced to an AMP algorithm

As for the case of low-rank matrix estimation, we first show that any GFOM (4.25) can be reduced to an
AMP algorithm via a change of variables. The proof of the next lemma is very similar to the one of Lemma
4.4.1 and we omit it.

Lemma C.2.1. Assume the matrix X and non-linearities (F
(1)
t , F

(2)
t , G

(1)
t , G

(2)
t , G

(t)
∗ ) satisfy the assump-

tions of either Setting 4.(a) or Setting 4.(b). Then there exist functions {φt : Rt+1 → R}t≥1, {φ̄t : Rt+2 →
R}t≥1, {ft : Rt+2 → R}t≥0 and {gt : Rt+1 → R}t≥1 satisfying the same assumptions such that the fol-
lowing holds. Let {at}t≥1 and {bt}t≥1 be sequences of vectors produced by the AMP iteration (C.15) with
non-linearities {ft}t≥0 and {gt}t≥1. Then for any t ∈ N>0, we have

u≤t = φ̄t(a
≤t;y,u), v≤t = φt(b

≤t;v).

Lemma C.2.1 implies that the class of AMP algorithms achieve the same minimum expected error as the
class of GFOM for the same number of iterations under any loss. This is formalized by the next corollary,
which is analogous to Corollary 4.4.1.

Corollary C.2.1. Let AtGFOM be the class of GFOM estimators with t iterations, and AtAMP be the class
of AMP algorithms with t iterations (under the assumptions of either Setting 4.(a), or Setting 4.(b)). (In
particular θ̂( · ) ∈ AtGFOM is defined by a set of n-independent functions {F (1)

t , F
(2)
t , G

(1)
t+1, G

(2)
t+1, G

(t+1)
∗ }t∈N,

and similarly for θ̂( · ) ∈ AtGFOM.)
Then for any loss function L : Rd × Rd → R≥0:

inf
θ̂( · )∈At

GFOM

p-liminf
n→∞

L(θ̂(X,y,u,v),θ) = inf
θ̂( · )∈At

AMP

p-liminf
n→∞

L(θ̂(X,y,u,v),θ) . (C.18)

C.2.3 Orthogonalization

In this section we show that we can further restrict ourselves to lower bounding the error of orthogonal AMP
(OAMP) algorithms.
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Lemma C.2.2. Let {at}t≥1, {bt}t≥1 be sequences produced by the AMP iteration (C.15) under either Setting
4.(a) or Setting 4.(b). Then there exist functions {ϕt : Rt+1 → Rt}t≥1 satisfying the same assumptions as
the non-linearities in the AMP iteration, such that the following holds:

(i) For all t ∈ N>0 we have b≤t = ϕt(q
≤t;v).

(ii) For any ψ : Rt+2 → R pseudo-Lipschitz of order 2,

p-lim
n,d→∞

1

d

d∑
i=1

ψ(q1i , · · · , qti , vi, θi) = E[ψ(Q1, · · · , Qt, V,Θ)],

where Qi = xi−1(αiΘ+ Zi) with (x0, · · · , xt−1) ∈ {0, 1}t and (α1, · · · , αt) ∈ Rt deterministic vectors,
and (Zi)i≥1

iid∼ N(0, 1) independent of (Θ, V ).

Proof. Given the state evolution of the AMP iteration defined via Eq. (C.17), we let

Yt := ft(Ḡ≤t;Y,U), St = span(Yk : 0 ≤ k ≤ t) , Y = h(Ḡ0;W ).

Note that by state evolution, E[YtYs] = Σt+1,s+1. By linear algebra, for all t ∈ N, there exist deterministic
constants {cts}0≤s≤t and xt ∈ {0, 1}, such that ctt ̸= 0 and

Rt := cttΠ
⊥
St−1

(Yt) =

t∑
s=0

ctsYs, E[RtRs] = 1s=txt.

Indeed, proceeding by induction, if Yt does not belong to St−1, then we can take xt = 1 and ctt =

∥Π⊥
St−1

(Yt)∥−1
L2 . Otherwise we take Rt = 0, ctt = 1 and xt = 0.

We prove the lemma by induction. For the base case t = 1, we let q1 = c00b
1, thus, claim (i) fol-

lows. As for claim (ii), we consider two cases. If x0 = 0, then E[f0(Y,U)2] = 0. By Stein’s lemma,
E[∂Ḡ0

f0(h(Ḡ0,W ), U)] = E[Ḡ0f0(h(Ḡ0,W ), U)]/Var[Ḡ0] = 0. Thus, claim (ii) holds with Q1 ≡ 0. If
x0 = 1, then c00 = E[f0(Y,U)2]1/2, and claim (ii) follows from state evolution (C.17) with

α1 =
E[∂Ḡ0

f0(h(Ḡ0,W ), U)]

E[f0(h(Ḡ0,W ), U)2]1/2
(a)
=

E[Ḡ0f0(h(Ḡ0,W ), U)]

Var[Ḡ0]E[f0(h(Ḡ0,W ), U)2]1/2
. (C.19)

where (a) holds by Stein’s lemma.
Suppose the lemma holds for the first t iterations, then we prove it also holds for the (t+1)-th iteration.

We let qt+1 =
∑t
s=0 ctsb

s+1. Since ctt ̸= 0, we can solve for bt+1. Thus, we obtain the transformation ϕt+1

that satisfies the desired properties. As a consequence, claim (i) follows.
As for claim (ii), first notice that the mapping

(b1, · · · , bt, v, θ) 7→ ψ(c00b1, · · · ,
∑t−1
s=0ct−1,sbs+1, v, θ)

is pseudo-Lipschitz of order two. Then we consider two cases. In the first case xt = 0, then Rt
a.s.
= 0. By

state evolution (C.17) and an application of Stein’s lemma, we obtain that (ii) holds with Qt+1
a.s.
= 0. In the
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second case, xt = 1, then again by the state evolution (C.17), Qt+1
d
= αt+1Θ+ Zt+1, where

αt+1 =
E[∂Ḡ0

Π⊥
St−1

(Yt)]

E[Π⊥
St−1

(Yt)2]1/2
(b)
=

E[Ḡ⊥,t
0 Π⊥

St−1
(Yt)]

Var[Ḡ⊥,t
0 ]E[Π⊥

St−1
(Yt)2]1/2

. (C.20)

Here, Ḡ⊥,t
0 = Π⊥

Ḡt
(Ḡ0) with Ḡt = span(Ḡi : 1 ≤ i ≤ t) and (b) follows from Stein’s lemma. Thus, we complete

the proof by induction.

By similar arguments as discussed in Remark 4.4.3, in the following parts of the paper, we will set xt = 1

for all t ∈ N without loss of generality.

C.2.4 Optimal orthogonal AMP

Recall that a sufficient statistics for Θ given S≤t := α≤tΘ + Z≤t is T0 := ⟨α≤t,S≤t⟩/∥α≤t∥2, and T0 can
be rewritten as:

T0 = ∥α≤t∥2Θ+G , G ∼ N(0, 1) , G ⊥ Θ . (C.21)

Further S≤t and V are conditionally independent, given Θ. Hence, the proof of Theorem 4.5.1 follows exactly
as for Theorem 4.3.1, once we upper bound the value of ∥α≤t∥2 achieved by any OAMP algorithm. Before
proving such a bound, we establish some useful identities.

Lemma C.2.3. Recall that (Ḡ0, Ḡ≤t) ∼ N(0t+1, Σ̄≤t), where

Σ̄ij =
1

δ
E[gi(ϕi(α≤iΘ+Z≤i;V );V )gj(ϕj(α≤jΘ+Z≤j ;V );V )] (C.22)

with (Zi)i≥1 ∼i.i.d. N(0, 1). Further recall that Ḡ⊥,t
0 = Π⊥

Ḡt
(Ḡ0) with Ḡt = span(Ḡi : 1 ≤ i ≤ t). Define

ω2
t := Var[Ḡ⊥,t

0 ], ζ2t :=
1

δ
(E[Θ2]− ω2

t ). (C.23)

Then, the following holds for all s, t ∈ N with s ≤ t,

E[Ḡ⊥,t
0 | h(Ḡ0,W ), U, Ḡ≤t]

d
= E[ωtZ0 | h(ωtZ0 + ζtZ1,W ), U, Z1],

E[Ḡ⊥,t
0 | h(Ḡ0,W ), U, Ḡ≤s] =

ω2
t

ω2
s

E[Ḡ⊥,s
0 | h(Ḡ0,W ), U, Ḡ≤s],

where Z0, Z1
iid∼ N(0, 1),

Proof. We let Ḡ∥,t
0 := Ḡ0−Ḡ⊥,t

0 , then we can write Ḡ∥,t
0 as a deterministic function of Ḡ≤t, and we denote this

function by Ḡ∥,t
0 = ct(Ḡ≤t). For s ≤ t, we observe that (Ḡ⊥,t

0 , Ḡ
∥,t
0 −Ḡ

∥,s
0 , Ḡ

∥,s
0 ) ∼ N(0,diag((ω2

t , ω
2
s−ω2

t , ζ
2
s ))).

In the following parts, with a slight abuse of notations, we use p to represent probability density functions
for various distributions. Then the following formula regarding the conditional probability density holds:

p(Ḡ⊥,t
0 = z | h(Ḡ0,W ) = h, U = u, Ḡ≤s = z≤s)
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∝
∫
p(Ḡ≤s = z≤s)p(Ḡ

⊥,t
0 = z)1{h(z + cs(z≤s) + y, w) = h}µW |U=u(dw)ϕ(y)dy

∝
∫
p(Ḡ⊥,t

0 = z)1{h(z + cs(z≤s) + y, w) = h}µW |U=u(dw)ϕ(y)dy

∝
∫
p(Ḡ

∥,s
0 = cs(z≤s))p(Ḡ

⊥,t
0 = z)1{h(z + c(z≤t) + y, w) = h}µW |U=u(dw)ϕ(y)dy

∝ p(Ḡ⊥,t
0 = z | h(Ḡ0,W ) = h, U = u, Ḡ

∥,s
0 = cs(z≤s)), (C.24)

where ϕ is the probability density function for N(0, ω2
s−ω2

t ). Notice that (Ḡ⊥,t
0 , Ḡ

∥,t
0 , U,W )

d
= (ωtZ0, ζtZ1, U,W ),

therefore, we take s = t in Eq. (C.24) and conclude that

E[Ḡ⊥,t
0 | h(Ḡ0,W ), U, Ḡ≤t] = E[Ḡ⊥,t

0 | h(Ḡ0,W ), U, Ḡ
∥,t
0 ]

d
= E[ωtZ0 | h(ωtZ0 + ζtZ1,W ), U, Z1],

which completes the proof of the first claim.
As for the second claim, notice that there exists Z2, Z3, Z4

iid∼ N(0, 1), such that (Ḡ⊥,t
0 , Ḡ

∥,t
0 −Ḡ

∥,s
0 , Ḡ

∥,s
0 ) =

(ωtZ2,
√
ω2
s − ω2

tZ3, ζsZ4). Therefore, using Eq. (C.24), we have

E[Ḡ⊥,t
0 | h(Ḡ0,W ), U, Ḡ≤s] =E[Ḡ⊥,t

0 | h(Ḡ0,W ), U, Ḡ
∥,s
0 ]

=E[ωtZ2 | h(ωtZ2 +
√
ω2
s − ω2

tZ3 + ζsZ4,W ), U, Z4]

(a)
=
ω2
t

ω2
s

E
[
ωtZ2 +

√
ω2
s − ω2

tZ3 | h(ωtZ2 +
√
ω2
s − ω2

tZ3 + ζsZ4,W ), U, Z4

]
=
ω2
t

ω2
s

E[Ḡ⊥,s
0 | h(Ḡ0,W ), U, Ḡ

∥,s
0 ]

(b)
=
ω2
t

ω2
s

E[Ḡ⊥,s
0 | h(Ḡ0,W ), U, Ḡ≤s],

where (a) is by Lemma C.2.6, and (b) is by Eq. (C.24). Thus, we complete the proof of the lemma.

The next lemma proves the desired upper bound on ∥α≤t∥2.

Lemma C.2.4. Recall the definition of {βt} in Eq. (4.26). Then for all t ∈ N>0 and all AMP algorithms
we have ∥α≤t∥2 ≤ βt.

Proof. Recall the definition of ωt, ζt in Eq. (C.23), and of (σt)t∈N>0 in Eq. (4.26). We will prove the
following claims by induction over t: ∥α≤t∥2 ≤ βt and ωt−1 ≥ σt.

For the base case t = 1, ω0 ≥ σ1 holds by definition. Using Eq. (C.19) we have

α2
1 =

E[Ḡ0f0(h(Ḡ0,W ), U)]2

Var[Ḡ0]2E[f0(h(Ḡ0,W ), U)2]
≤ sup
X∈σ{h(Ḡ0,W ),U}

E[Ḡ0X]2

Var[Ḡ0]2E[X2]
≤ 1

σ2
1

E[E[Z0 | h(σ1Z0,W ), U ]2],

where Z0 ∼ N(0, 1) and the last step follows from Cauchy-Schwarz inequality.
Next we assume the induction claim holds for the first t iterations, and we prove it holds for the (t+1)-th

iteration. Notice that the random variables {Y0/E[Y 2
0 ]

1/2, · · · ,Π⊥
St−1

(Yt)/E[Π⊥
St−1

(Yt)
2]1/2} are orthonormal.
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Then we have:

α2
t+1 =

E[E[Ḡ⊥,t
0 | h(Ḡ0,W ), Ḡ≤t, U ] Π⊥

St−1
(Yt)]

2

ω4
tE[Π⊥

St−1
(Yt)2]

(a)

≤ 1

ω4
t

E[E[Ḡ⊥,t
0 | h(Ḡ0,W ), Ḡ≤t, U ]2]−

t−1∑
s=0

E[Ḡ⊥,t
0 Π⊥

Ss−1
(Ys)]

2

ω4
tE[Π⊥

Ss−1
(Ys)2]

(b)
=

1

ω2
t

E[E[Z0 | h(ωtZ0 + ζtZ1,W ), U, Z1]
2]−

t−1∑
s=0

E[Ḡ⊥,s
0 Π⊥

Ss−1
(Ys)]

2

ω4
sE[Π⊥

Ss−1
(Ys)2]

(c)

≤ 1

σ2
t+1

E[E[Z0 | h(σt+1Z0 + σ̃t+1Z1,W ), U, Z1]
2]−

t∑
s=1

α2
s,

where (a) holds by Eq. (C.20) and Pythagora’s theorem, (b) by Lemma C.2.3, and (c) is by induction
hypothesis and Lemma C.2.5. The last inequality above gives

∑t+1
s=1 α

2
s ≤ β2

t+1.
For t ∈ N>0 we define

Y ′
t := gt(ϕt(α≤tΘ+Z≤t;V );V ), S ′t := span(Y ′

i : 1 ≤ i ≤ t).

By state evolution (C.17), ω2
t+1 = E[Π⊥

S′
t+1

(Θ)2]/δ. Further we have

ω2
t+1

(d)
=

1

δ
E[Θ2]− 1

δ
E[ΠS′

t+1
(Θ)2]

(e)

≥ 1

δ
E[Θ2]− 1

δ
E[E[Θ | α≤t+1Θ+Z≤t+1, V ]2]

(f)
=

1

δ
E[Θ2]− 1

δ
E[E[Θ | ∥α≤t+1∥2Θ+G,V ]2]

(g)

≥ 1

δ
E[Θ2]− 1

δ
E[E[Θ | βt+1Θ+G,V ]2] = σ2

t+2,

where (d) holds by Pythagora’s theorem, (e) by Jensen’s inequality, (f) by property of sufficient statistics
and (g) is by induction hypothesis and Jensen’s inequality.

This completes the proof of the lemma by induction.

Lemma C.2.5. Let Z0, Z1
iid∼ N(0, 1). For any fixed ω2

0 ≥ 0, the following function is non-increasing in
a ∈ (0, ω2

0 ]):

a 7→ 1

a2
E[E[Z0 | h(aZ0 + (ω2

0 − a2)1/2Z1,W ), U, Z1]
2].

Proof. For δ > 0, we introduce the decomposition Z1 = δZ2 +
√
1− δ2Z3, with Z2, Z3

iid∼ N(0, 1) that are
independent of Z0. Then by Jensen’s inequality,

1

a2
E[E[Z0 | h(aZ0 + (ω2

0 − a2)1/2Z1,W ), U, Z1]
2]

=
1

a2
E[E[Z0 | h(aZ0 + (ω2

0 − a2)1/2δZ2 + ((ω2
0 − a2)(1− δ2))1/2Z3,W ), U, Z2, Z3]

2]

≥ 1

a2
E[E[Z0 | h(aZ0 + (ω2

0 − a2)1/2δZ2 + ((ω2
0 − a2)(1− δ2))1/2Z3,W ), U, Z3]

2]
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=
1

a2 + δ2(ω2
0 − a2)

E[E[Z0 | h((a2 + δ2(ω2
0 − a2))1/2Z0 + ((ω2

0 − a2)(1− δ2))1/2Z3,W ), U, Z3]
2].

The above inequality holds for all δ ∈ [0, 1], thus completes the proof of the lemma.

Lemma C.2.6. We let Z1, Z2 be independent mean-zero Gaussian random variables with variance σ2
1 and σ2

2,
respectively. For σ2

1 ≥ q ≥ 0, we let Gq be a mean-zero Gaussian random variable such that Cov(Gq, Z2) = 0

and Var(Gq) = Cov(Gq, Z1) = q. Then for all h : R2 → R, we have

fh(q) := E[Gq | h(Z1 + Z2,W ), Z2] =
q

σ2
1

E[Z1 | h(Z1 + Z2,W ), Z2].

Proof. For q1, q2 ≥ 0 with q1 + q2 ≤ σ2
1 , there exist Gq1 , Gq2 independent of each other, and satisfy the

above constraints. Then, we have Cov(Gq1 +Gq2 , Z2) = 0, Cov(Gq1 +Gq2 , Z1) = Var(Gq1 +Gq2) = q1 + q2.
Therefore,

fh(q1 + q2) = E[Gq1 +Gq2 | h(Z1 + Z2,W ), Z2] = fh(q1) + fh(q2).

For all fixed (h(Z1 + Z2,W ), Z2), fh is continuous, thus the lemma follows from Cauchy’s equation.

C.3 Proof of Theorem 4.5.1 under Setting 3

In this section we prove Theorem 4.5.1 under the assumptions of Setting 3.

C.3.1 AMP algorithm

As in previous proofs, we start with the definition of AMP algorithms with non-separable non-linearities.
Under Setting 3, an AMP algorithm for solving generalized linear models is defined by a sequence of uniformly
Lipschitz functions {ft : Rn(t+2) → Rn}t≥0 and {gt : Rd(t+1) → Rd}t≥1, and produces {bt}t≥1 ⊆ Rd and
{at}t≥1 ⊆ Rn via the following iteration:

bt+1 = XTft(a
≤t;y,u)−

t∑
s=1

ξt,sgs(b
≤s;v),

at = Xgt(b
≤t;v)−

t∑
s=1

ηt,sfs−1(a
≤s−1;y,u).

(C.25)

Here, (ξt,s)1≤s≤t and (ηt,s)1≤s≤t are deterministic coefficients defined via

ξt,s =
1

n

n∑
i=1

E
[
∂i,sft,i(ḡ≤t;y∗,u)

]
, y∗ := h(ḡ0,w)

ηt,s =
1

n

d∑
i=1

E
[
∂i,sgt,i(µ≤tθ + g≤t;v)

]
.

(C.26)
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Here we introduced the notations ḡ≤t := (ḡ1, · · · , ḡt) ∈ Rn×t, g≤t := (g1, · · · , gt) ∈ Rd×t, and the joint
distributions of (θ,v, (gi)i≥1) and of (y∗,u,w, (ḡi)i≥0) are determined by the following state evolution
recursions

(ḡ0, ḡ≤t) ∼ N(0, Σ̄≤t+1 ⊗ In), g≤t ∼ N(0,Σ≤t ⊗ Id),

Σ̄ij = lim
n,d→∞

1

n
E[gi(µ≤iθ + g≤i;v)

Tgj(µ≤jθ + g≤j ;v)], i, j ≥ 1,

Σ̄i0 = Σ̄0i = lim
n,d→∞

1

n
E[gi(µ≤iθ + g≤i;v)

Tθ], Σ̄00 =
1

δ
E[Θ2], i ≥ 1.

Σij = lim
n,d→∞

1

n
E[fi−1(ḡ≤i−1;y∗,u)

Tfj−1(ḡ≤j−1;y∗,u)],

µt+1 = lim
n,d→∞

1

n

n∑
i=1

E
[
∂ḡ0,ift,i(ḡ≤t;y∗,u)

]
.

(C.27)

In the above equations Σ≤t = (Σij)1≤i,j≤t, Σ̄≤t = (Σ̄ij)0≤i,j≤t and µ≤t = (µi)1≤i≤t, and the limits are
assumed to exist. Here, ∂i,s refers to the partial derivative with respect to the s-th variable of the i-th row of
the input matrix, and ∂ḡ0,i refers to the partial derivative with respect to ḡ0,i. Note that f0 depends only on
(y∗,u), thus, the state evolution does not need any specific initialization. After t iterations as in Eq. (C.25),
the AMP algorithm estimates θ by applying a uniformly Lipschitz function g∗t : Rd(t+1) → Rd to (b≤t,v):

θ̂(X,y,u,v) = g∗t (b
≤t;v).

The following theorem describes the state evolution of the AMP iteration (C.25).

Theorem C.3.1. Assume Xij
iid∼ N(0, 1/n) for all i ∈ [n] and j ∈ [d], (θi, vi)i≤d

iid∼ µΘ,V , (wi, ui)i≤n
iid∼ µW,U ,

and for all t ∈ N, the non-linearities (ft, gt+1) are uniformly Lipschitz. Furthermore, we assume the following
limits exist for all (µ,Σ, Σ̄):

lim
n,d→∞

1

n
E[ft(ḡ≤t;y∗,u)

Tfs(ḡ≤s;y∗,u)],

lim
n,d→∞

1

n
E[ft(ḡ≤t;y∗,u)

Tḡ0],

lim
n,d→∞

1

d
E[gt(µ≤tθ + g≤t;v)

Tgs(µ≤sθ + g≤s;v)],

lim
n,d→∞

1

d
E[gt(µ≤tθ + g≤t;v)

Tθ],

lim
n,d→∞

1

d
E[g∗t (µ≤tθ + g≤t;v)

Tg∗s (µ≤sθ + g≤s;v)],

lim
n,d→∞

1

d
E[g∗t (µ≤tθ + g≤t;v)

Tθ].

Then for {ψn : Rd(t+2) → R}n≥1 uniformly pseudo-Lipschitz of order 2,

ψn(b
≤t,θ,v) = E[ψn(µ≤tθ + g≤t,θ,v)] + oP (1).
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C.3.2 Any GFOM can be reduced to an AMP algorithm

Again we show that GFOM (4.25) can be reduced to an AMP algorithm (C.25) under Setting 3. To be
specific, we have the following lemma:

Lemma C.3.1. Under the assumptions of Setting 3, for all t ∈ N>0, there exist uniformly Lipschitz functions
φt : Rd(t+1) → Rdt, φ̄t : Rn(t+2) → Rnt, ft−1 : Rn(t+1) → Rn and gt : Rd(t+1) → Rd that satisfy the following
conditions. We let {at}t≥1 and {bt}t≥1 be sequences of vectors produced by the AMP iteration (C.25) with
non-linearities {ft}t≥0 and {gt}t≥1. Then for any t ∈ N>0, we have

u≤t = φ̄t(a
≤t;y,u), v≤t = φt(b

≤t;v),

ft−1(a
≤t−1;y,u) = F

(1)
t−1(φ̄t−1(a

≤t−1;y,u);y,u), gt(b
≤t;v) = G

(1)
t (φt(b

≤t;v);v).

Furthermore, {φt}t≥1 and {φ̄t}t≥1 satisfy the following conditions. For any (µ,Σ, Σ̄) and t ∈ N>0, there
exist uniformly bounded (bij)1≤j≤i≤t, (b̄ij)1≤j≤i≤t, which are sequences with respect to n, such that for y≤t,
ȳ≤t as defined in Setting 3, we have ȳ≤t = φ̄t(ḡ≤t;y∗,u) and y≤t = φt(µ≤tθ + g≤t;v).

Remark C.3.1. For all t ∈ N>0, since (bij)1≤j≤i≤t and (b̄ij)1≤j≤i≤t are uniformly bounded, there exists
a subsequence of N>0, which we denote by {nk}k∈N>0

, such that for all s, r ≤ t, bs,t and b̄s,r converge to
n-independent limits along {nk}k∈N>0 . As a consequence, the following limits exist in probability along the
subsequence {nk}k∈N>0 by the third assumption of Setting 3:

lim
n,d→∞

1

n
ft(ḡ≤t;y∗,u)

Tfs(ḡ≤s;y∗,u), lim
n,d→∞

1

n
ft(ḡ≤t;y∗,u)

Tḡ0,

lim
n,d→∞

1

d
gt(µ≤tθ + g≤t;v)

Tgs(µ≤sθ + g≤s;v), lim
n,d→∞

1

d
gt(µ≤tθ + g≤t;v)

Tθ,

lim
n,d→∞

1

d
g∗t (µ≤tθ + g≤t;v)

Tg∗s (µ≤sθ + g≤s;v), lim
n,d→∞

1

d
g∗t (µ≤tθ + g≤t;v)

Tθ.

As a consequence, the new AMP iteration satisfies all assumptions of Theorem C.3.1, thus, its asymptotics
can be characterized by the state evolution (C.27) along the subsequence.

Proof. We prove the lemma by induction over t. For the base case t = 1, we set f0(y,u) := F
(1)
0 (y,u),

φ1(b
1;v) := b1 + F

(2)
0 (v), g1(b1;v) := G

(1)
1 (φ1(b

1;v);v) and φ̄1(a
1;y,u) := a1 +G

(2)
1 (y,u) + η1,1f0(y,u),

where η1,1 is defined via state evolution (C.27). Notice that η1,1 is a function of n. By the uniform
Lipschitzness assumption, η1,1 is uniformly bounded as a sequence in n. Thus, φ1, φ̄1 are uniformly Lipschitz.
By definition, y1 = φ1(µ1θ + g1;v) and ȳ1 = φ̄1(ḡ1;y∗,u) with b̄11 = η1,1, which completes the proof for
the base case.

Next, suppose the lemma holds for the first t iterations, we then prove it holds for the (t+1)-th iteration.
By induction hypothesis,

vt+1 = XTF
(1)
t (φ̄t(a

≤t;y,u);y,u) + F
(2)
t (φt(b

≤t;v);v),

ut+1 = XG
(1)
t+1(φt(b

≤t+1;v);v) +G
(2)
t+1(φ̄t(a

≤t;y,u);y,u).

We let ft(x≤t;y,u) := F
(1)
t (φ̄t(x

≤t;y,u);y,u) and gt+1(x
≤t+1;v) := G

(1)
t+1(φt+1(x

≤t+1;v);v). The com-
position of uniformly Lipschitz functions is still uniformly Lipschitz. As a consequence, we can conclude that
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ft, gt+1 are uniformly Lipschitz functions. Based on the choice of {fs}0≤s≤t and {gs}1≤s≤t+1, we can com-
pute the coefficients for the Onsager correction terms {ξt,s}1≤s≤t and {ηt+1,s}1≤s≤t+1, which are uniformly
bounded as sequences in n.

Then we define at+1, bt+1 via the AMP iteration (C.25), which gives

bt+1 = vt+1 − F (2)
t (φt(b

≤t;v);v)−
t∑

s=1

ξt,sG
(1)
s (φt(b

≤s;v);v),

at+1 = ut+1 −G(2)
t+1(φ̄t(a

≤t;y,u);y,u)−
t+1∑
s=1

ηt+1,sF
(1)
s−1(φ̄s−1(a

≤s−1;y,u);y,u).

Solving for ut+1 and vt+1 leads to the definition of φt+1 and φ̄t+1. Furthermore, by setting bts = ξt,s and
b̄t+1,s = ηt+1,s, we have

φt+1(µ≤t+1θ + g≤t+1;v)

=(φt(µtθ + g≤t;v), µt+1θ + gt+1 + F
(2)
t (φt(µ≤tθ + g≤t;v);v) +

t∑
s=1

ξt,sG
(1)
s (φt(µ≤sθ + g≤s;v);v))

=(y≤t,yt+1),

φ̄t+1(ḡ≤t+1;y∗,u)

=(φ̄t(ḡ≤t;y∗,u), ḡt+1 +G
(2)
t+1(φ̄t(ḡ≤t;y∗,u);y∗,u) +

t+1∑
s=1

ηt+1,sF
(1)
s−1(φ̄s−1(ḡw≤ s− 1;y∗,u);y∗,u))

=(ȳ≤t, ȳt+1),

thus completes the proof of the lemma by induction.

As an immediate consequence of Lemma C.3.1, Corollary C.2.1 holds true under Setting 3 as well.

C.3.3 Orthogonalization

By linear algebra, {bt}t≥1 derived via AMP iteration (C.25) can be further reduced to a set of vectors that
are approximately orthogonal after subtracting the component along θ, which leads to the following lemma:

Lemma C.3.2. Let {at}t≥1, {bt}t≥1 be sequences produced by the AMP iteration (C.25) under Setting 3.
Then there exist functions {ϕt : Rd(t+1) → Rdt}t≥1 which are uniformly Lipschitz, such that the following
holds:

(i) For all t ∈ N>0, there exist n-independent constants {cts}0≤s≤t such that ctt ̸= 0 and qt+1 =∑t
s=0 ctsb

s+1. We write q≤t = ϕt(b
≤t), and ϕt as a sequence in n is uniformly Lipschitz.

(ii) For all t ∈ N>0, there exist (x0, · · · , xt−1) ∈ {0, 1}t and (α1, · · · , αt) ∈ Rt, such that for any {ψn :

Rn(t+2) → Rn} uniformly pseudo-Lipschitz of order 2,

ψn(q
≤t;θ,v) = E[ψn(q≤t;θ,v)] + oP (1),
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where qi = xi−1(αiθ + zi), with {zi}i≥1
iid∼ N(0, Id) independent of (θ,v).

Proof. Recall that y∗ = h(ḡ0,w). Given the state evolution (C.27) of the AMP iteration, we define

ht := ft(ḡ≤t;y∗,u), St := span(hk : 0 ≤ k ≤ t).

Note that by state evolution, limn,d→∞ E⟨ht,hs⟩/n = Σs+1,t+1. By linear algebra, for all t ∈ N, there exist
deterministic constants {cts}0≤s≤t and xt ∈ {0, 1}, such that ctt ̸= 0 and

t∑
i=0

s∑
j=0

cticsjΣi+1,j+1 = 1s=txt.

We define rt :=
∑t
s=0 ctshs, then limn→∞ E⟨rt, rs⟩/n = 1s=txt for all s, t ∈ N. Next, we prove the lemma

by induction. For the base case t = 1, we let q1 = c00b
1, thus, claim (i) follows. As for claim (ii), we

consider two cases. In the first case, x0 = 0, then E⟨h0,h0⟩/n→ 0. By state evolution (C.27),

µ1
(a)
= lim

n,d→∞

1

n

n∑
i=1

δE[ḡ0,if0,i(h(ḡ0,w),u)]

E[Θ2]
,

(b)

≤ lim sup
n,d→∞

1√
n

δ1/2

E[Θ2]1/2
E[∥f0(y∗,u)∥22]1/2 → 0,

where (a) holds by Stein’s lemma, and (b) holds by Cauchy-Schwartz inequality. Thus, claim (ii) holds with
q1 ≡ 0. In the second case, x0 = 1, whence c00 = Σ

−1/2
11 , and claim (ii) holds by the state evolution (C.27).

Moreover,

α1 = lim
n,d→∞

1√
n

n∑
i=1

E[∂ḡ0,if0,i(h(ḡ0,w),u)]

E[∥f0(h(ḡ0,w),u)∥22]1/2
. (C.28)

Suppose the lemma holds for the first t iterations, then we prove it holds for the (t+ 1)-th iteration as well.
We let qt+1 =

∑t
s=0 ctsb

s+1, and the definition of ϕt+1 together with claim (i) follows immediately. As for
claim (ii), first notice that the following mapping is uniformly Lipschitz of order 2:

(x1, · · · ,xt+1,θ,v) 7→ ψn(ϕt+1(x1, · · · ,xt+1);θ,v).

Again we consider two cases. In the first case, xt = 0, thus by state evolution (C.27), (ii) holds with qt+1 = 0.
In the second case, xt = 1, then again by state evolution recursion, we can set qt+1 = αt+1θ + zt+1, with

αt+1 = lim
n,d→∞

√
nE[⟨ḡ⊥,t

0 ,Π⊥
St−1

(ht)⟩]
E[∥Π⊥

St−1
(ht)∥22]1/2E[∥ḡ⊥,t

0 ∥22]
, (C.29)

where ḡ⊥,t
0 := Π⊥

Ḡt
(ḡ0) with Ḡt := span(ḡi : 1 ≤ i ≤ t). Therefore, we complete the proof of the lemma by

induction.
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C.3.4 Optimality analysis

As before, we restrict to the case with xt = 1 for all t ∈ N. Given (v,α≤tθ + g≤t), a sufficient statistics of
θ is (v, ∥α≤t∥2θ + g) with g ∼ N(0, Id) independent of θ. Therefore, by Lemma C.3.1 and C.3.2, in order
to derive the minimum estimation error achieved by any GFOM with t iterations, it suffices to study the
maximum value of ∥α≤t∥2, which leads to the following lemma:

Lemma C.3.3. For all t ∈ N>0 and all AMP iterations (C.25), we have ∥α≤t∥22 ≤ β2
t .

Proof. Recall that ḡ⊥,t
0 := Π⊥

Ḡt
(ḡ0) with Ḡt := span(ḡi : 1 ≤ i ≤ t). We define:

ω2
t := lim

n,d→∞

1

n
E[∥ḡ⊥,t

0 ∥22], ζ2t :=
1

δ
E[Θ2]− ω2

t .

The above limit exists by the assumption of the AMP algorithm. Here, we will prove a stronger result. To be
precise, we will establish that the following two claims hold for all t ∈ N+: (1) ωt−1 ≥ σt; (2) ∥α≤t∥22 ≤ β2

t .
We prove the claims via induction. By definition, ω0 = σ1. Furthermore, by Eq. (C.28),

α2
1 = lim

n,d→∞

{
1√
n

n∑
i=1

E[∂ḡ0,if0,i(h(ḡ0,w),u)]

E[∥f0(h(ḡ0,w),u)∥22]1/2

}2

(a)
= lim

n,d→∞

δ2E[⟨f0(h(ḡ0,w),u), ḡ0⟩]2
nE[∥f0(h(ḡ0,w),u)∥22]E[Θ2]2

= lim
n,d→∞

δ2E[⟨f0(h(ḡ0,w),u),E[ḡ0 | h(ḡ0,w),u]⟩]2
nE[∥f0(h(ḡ0,w),u)∥22]E[Θ2]2

(b)

≤ lim
n,d→∞

δ2E[∥E[ḡ0 | h(ḡ0,w),u]∥22]
nE[Θ2]2

= β2
1 ,

where (a) is by Stein’s lemma, and (b) is by Cauchy-Schwartz inequality. Then we assume the lemma holds
for the first t iterations, and we prove by induction that it also holds for iteration (t+ 1). For t ∈ N>0, we
let

kt := gt(µ≤tθ + g≤t;v), S ′t := span(ki : 1 ≤ i ≤ t).

By the state evolution of the AMP algorithm, ω2
t = limn,d→∞ E[∥Π⊥

S′
t
(θ)∥22]/n. Thus, we have

ω2
t

(d)
=

1

δ
E[Θ2]− lim

n,d→∞

1

n
E[∥ΠS′

t
(θ)∥22]

(e)

≥ 1

δ
E[Θ2]− lim

n,d→∞

1

n
E[∥E[θ | α≤tθ + z≤t,v]∥22]

(f)
=

1

δ
E[Θ2]− lim

n,d→∞

1

n
E[∥E[θ | ∥α≤t∥2θ + z,v]∥22]

(g)

≥ 1

δ
E[Θ2]− 1

δ
E[E[Θ | βtΘ+G,V ]2] = σ2

t+1,

where (d) is by Pythagora’s theorem, (e) is by Jensen’s inequality, (f) is by property of sufficient statistics,
and (g) is by induction hypothesis. Thus, we have completed the proof of claim (1).
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Then we prove claim (2). By Eq. (C.29),

α2
t+1 = lim

n,d→∞

nE[⟨E[ḡ⊥,t
0 | ḡ≤t,u, h(ḡ0,w)],Π⊥

St−1
(ht)⟩]2

E[∥Π⊥
St−1

(ht)∥22]E[∥ḡ⊥,t
0 ∥22]2

(a)

≤ lim
n,d→∞

E[∥E[ḡ⊥,t
0 | ḡ≤t,u, h(ḡ0,w)]∥22]

nω4
t

− lim
n,d→∞

t−1∑
s=0

E[⟨Π⊥
Ss−1

(hs),E[ḡ⊥,t
0 | ḡ≤s,u, h(ḡ0,w)]⟩]2

nω4
tE[∥Π⊥

Ss−1
(hs)∥22]

(b)
= lim
n,d→∞

1

ω2
t

E[E[Z0 | h(ωtZ0 + ζtZ1,W ), U, Z1]
2]− lim

n,d→∞

t−1∑
s=0

E[⟨Π⊥
Ss−1

(hs),E[ḡ⊥,s
0 | ḡ≤s,u, h(ḡ0,w)]⟩]2

nω4
sE[∥Π⊥

Ss−1
(hs)∥22]

= lim
n,d→∞

1

ω2
t

E[E[Z0 | h(ωtZ0 + ζtZ1,W ), U, Z1]
2]− lim

n,d→∞

t−1∑
s=0

nE[⟨ḡ⊥,s
0 ,Π⊥

Ss−1
(hs)⟩]2

E[∥Π⊥
Ss−1

(hs)∥22]E[∥ḡ⊥,s
0 ∥22]2

(c)

≤ 1

σ2
t+1

E[E[Z0 | h(σt+1Z0 + σ̃t+1Z1,W ), U, Z1]
2]−

t∑
s=1

α2
s,

where (a) is by Pythagora’s theorem, (b) is by Lemma C.2.3, and (c) is by induction hypothesis and Lemma
C.2.5. The last inequality above gives

∑t+1
s=1 α

2
s ≤ β2

s+1. Thus, we have completed the proof of the lemma
by induction.

C.4 Reduction to matrices with sub-Gaussian entries

In this section, we show that in order to prove Theorem 4.3.1 under Setting 2.(a) (or to prove Theorem
4.5.1 under Setting 4.(a)), it suffices to consider cases where the matrix W (or X) has sub-Gaussian entries.
Here, we prove this claim for Theorem 4.3.1 under Setting 2.(a). Proof of the claim for Theorem 4.5.1 under
Setting 4.(a) follows by the same argument, with notational adaptations.

By assumption, E[W 4
ij ] ≤ C/n2 and E[Wij ] = 0. Thus, we claim that for all ϵ > 0 and i, j ∈ [n],

there exists decomposition Wij = W
(1)
ij +W

(2)
ij , such that E[W (1)

ij ] = E[W (2)
ij ] = 0, ess supn

√
n|W (1)

ij | < ∞,
supn n

2E[(W (2)
ij )4] < ∞ and nVar[W

(2)
ij ] ≤ ϵ. Furthermore, (W

(1)
ij )i<j≤n are independent and identically

distributed random variables, and the same property holds for (W
(2)
ij )i<j≤n. To prove this claim, we let

ξϵ > 0 such that C/ξ2ϵ < ϵ. We define

W
(1)
ij :=Wij1

√
n|Wij |≤ξϵ − E[Wij1

√
n|Wij |≤ξϵ ],

W
(2)
ij :=Wij1

√
n|Wij |>ξϵ − E[Wij1

√
n|Wij |>ξϵ ].

Then
√
n|W (1)

ij | ≤ 2ξϵ, E[W (1)
ij ] = E[W (2)

ij ] = 0, supn n
2E[(W (1)

ij )4] < ∞ and supn n
2E[(W (2)

ij )4] < ∞.
Furthermore, nVar[W (2)

ij ] ≤ nE[W 2
ij1

√
n|Wij |>ξϵ ] ≤ C/ξ2ϵ < ϵ, thus completes the proof of the claim.

With the above decomposition, we let W (1) = (W
(1)
ij )i,j≤n and W (2) = (W

(2)
ij )i,j≤n be n× n matrices.

By the Bai-Yin law [192], we have ∥W (2)∥op ≤ 2
√
ϵ+ oP (1). If we replace W with W (1) in model definition

(4.5), and denote the iterates obtained by GFOM (4.6) by {ũt}t≥1, then we can prove by induction that for
all t ∈ N>0, with probability 1− on(1),

1√
n
∥ut − ũt∥2 ≤ F (ϵ, t).
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Here, F (ϵ, t)→ 0 as ϵ→ 0+. The proof is via simple application of the Lipschitz assumption and the upper
bound of the spectral norm of W (2) we have just derived. Since ϵ is arbitrary, we conclude that if Theorem
4.3.1 holds for sub-Gaussian distributions, then it also holds for distributions with bounded fourth moments.



Appendix D

Sampling from the posterior via diffusion

processes

D.1 Technical preliminaries

This section summarize some technical facts that will be useful in the proof.

Remark D.1.1. Let θ,X be a couple of random variables (vectors) whose joint distribution is given by the
general Bayesian model (5.1). Let θ(1), . . . ,θ(k) be i.i.d. samples from the posterior µX( · )x := P( · |X),
independent of θ. Then

X,θ(1), . . . ,θ(k) d
= X,θ,θ(1), . . . ,θ(k−1) . (D.1)

(Here d
= denotes equality in distribution.)

This fact is immediate (just write the joint distribution) and is known in physics as the “Nishimori
identity.”

Lemma D.1.1 (Lemma 3.2 in [165]). If f and g are two differentiable convex functions, then for any b > 0,

|f ′(a)− g′(a)| ≤ g′(a+ b)− g′(a− b) + d

b
,

where d = |f(a+ b)− g(a+ b)|+ |f(a− b)− g(a− b)|+ |f(a)− g(a)|.

Lemma D.1.2 (Lemma 4.15 in [4]). Suppose probability distributions µ1, µ2 on [−1, 1]n are given. Sample
m1 ∼ µ1 and m2 ∼ µ2 and let θ1,θ2 ∈ {−1,+1}n be standard randomized roundings, respectively of m1

and m2. (Namely, the coordinates of θi are conditionally independent given mi, with E[θi | mi] = mi.)
Then

W2,n(L(θ1),L(θ2)) ≤ 2
√
W2,n(µ1, µ2).

195
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Lemma D.1.3 (Proposition 2.1.2 in [192]). Let g ∼ N(0, 1). Then for all t > 0, it holds that(
1

t
− 1

t3

)
· 1√

2π
e−t

2/2 ≤ P(g ≥ t) ≤ 1

t
· 1√

2π
e−t

2/2.

D.2 Concentration of the stochastic localization process

The next lemma is a slight generalization of analogous results in [80, 4].

Lemma D.2.1. Let µ ∈P2(Rn) be a probability measure with finite second moment, and y(t) = tHθ+
√
tg

for (θ, g) ∼ µ ⊗ N(0, In). Further, let µt( · ) := P(θ ∈ · |y(t)), and m(y(t); t) := E[θ|y(t)]. Finally, denote
by P ker(H) the projector onto the null space of H.

Then the following inequalities hold for all t > 0:

ECov(µt) ⪯ P ker(H) Cov(µ)P ker(H) +
1

t
H+(H+)T , (D.2)

W2,n(µ,Law(m(y(t); t)))2 ≤ 1

n
Tr(P ker(H) Cov(µ)) +

1

nt
Tr(H+(H+)T

)
. (D.3)

Proof. By rescaling H, we can assume without loss of generality t = 1. We can also center µ so that
E(θ) = 0. We will write, for simplicity, y = y(1). Note that

ECov(µt) = E
{(

θ − E(θ|y)
)(
θ − E(θ|y)

)T} (D.4)

≤ E
{(

θ −H+y
)(
θ −H+y

)T} (D.5)

= P ker(H) Cov(µ)P ker(H) +H+(H+)T , (D.6)

where the inequality follows by the optimality of posterior expectation under quadratic losses. This proves
the first claim (D.2).

In order to prove the second one, denote by B(n, t) the right-hand side of Eq. (D.3). By taking the
trace of the former inequality, we obtain

E
{
W2,n(µt, δm(y(t),t))

2
}
=

1

n
ETrCov(µt) ≤ B(n, t) . (D.7)

Since (µ, ν) 7→W2(µ, ν)
2 is jointly convex in (µ, ν), Jensen’s inequality implies

E
{
W2,n(µt, δm(y(t),t))

2
}
≥W2,n(Eµt,Eδm(y(t),t))

2 =W2,n(µ,Law(m(y(t); t)))2 , (D.8)

which completes our proof.

D.3 Proof of Lemma 5.3.1

We will use the following lemma, which is a straightforward consequence of the fact that the characteristic
function uniquely identifies the corresponding probability measure.
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Lemma D.3.1. Let P be a probability measure on R. Then P is symmetric (i.e. P(A) = P(−A) for
every Borel set A) if and only if its characteristic function φP is real values or, equivalently, if and only if
φP(t) = φP(−t) for every t ∈ R.

Recall that ν is a top eigenvector of X with norm ∥ν∥22 = nβ2(β2 − 1). We denote by λ1 the corre-
sponding eigenvalue, and note that this is almost surely non-degenerate (because the law of X is absolutely
continuous with respect to Lebesgue). Let

ν+ = sν , s := sign⟨ν,θ⟩ . (D.9)

Note that we can assume s independent of θ,W (because we can define ν to be taken uniformly at random
among the two eigenvectors with given norm.)

For any Ω ∈ O(n) satisfying Ωθ = θ and is independent of W , we have ΩWΩT d
= W . Moreover, if

we replace W by ΩWΩT, then λX is the top eigenvalue of ΩXΩT = βθθT/n + ΩWΩT and Ων is the
corresponding eigenvector. As a result, we can conclude that the following two conditional distributions are
equal:

ΩWΩT,Ων+ | θ,Ω d
= W ,ν+ | θ,Ω .

Let P⊥
θ be the projector orthogonal to θ. The above invariance implies that, conditioning on θ, ⟨θ,ν+⟩+/∥θ∥2 =

ρ∥ and ∥P⊥
θ ν+∥2 = ρ⊥, we have (on θ ̸= 0):

ν+ = ρ∥
θ

∥θ∥2
+ ρ⊥u ,

where u is a uniformly random unit vector orthogonal to θ. Equivalently,

ν+ = ρ∥
θ

∥θ∥2
+ ρ⊥

P⊥
θ g

∥P⊥
θ g∥2

,

where g ∼ N(0, In) independent of θ.
By [28] ρ∥/

√
n = (β2−1)+on,P (1) and therefore, using the normalization of ν+, ρ⊥/

√
n = (β2−1)1/2+

on,P (1). Using the fact that ∥θ∥2 =
√
n+ on, P (1) and ∥P⊥

θ g∥2 =
√
n+ on, P (1) (both hold by the law of

large numbers, since
∫
θ2 πΘ(dθ) = 1), we obtain

p-lim
n→∞

1

n

∥∥ν+ − (β2 − 1)θ −
√
β2 − 1g

∥∥2
2
= 0 .

By Lemma D.3.1 we can assume without loss of generality ℑφπΘ
((β2 − 1)t0) > δ0 > 0 for some

delta0, t0 > 0. We then define

A(ν) := signTn(ν) , Tn(ν) :=
1

n

n∑
i=1

sin(t0νi) . (D.10)

Note that Tn(ν) = s Tn(ν+) and therefore the proof is completed by showing that, with high probability
Tn(ν+) > 0. Indeed, let δ1 := exp(−(β2 − 1)t20/2)δ0. Then, letting ν+ := (β2 − 1)θ −

√
β2 − 1g, by
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Eq (D.10), we have, with high probability

∣∣Tn(ν+)− Tn(ν+)
∣∣ ≤ δ1

2
. (D.11)

On the other hand, by the law of large numbers (for (Θ, G) ∼ πΘ ⊗ N(0, 1))

p-lim
n→∞

Tn(ν+) = E sin((β2 − 1)Θ−
√
β2 − 1G) (D.12)

= exp
(
− (β2 − 1)t20/2

)
ℑφπΘ

((β2 − 1)t0) ≥ δ1 . (D.13)

Together with the previous display, this completes the proof.

D.4 Proof of Lemma 5.6.1

The claim of Lemma 5.6.1 can be restated as follows. For all β ≥ β0 and T > t > 0, there exists K(β, T, ε) ∈
N>0 depending only on (β, T, ε, πΘ), such that with probability 1− on(1) as n→∞, it holds that

1√
n
∥m(y(t), t)− m̂K(β,T,ε)(y(t), t)∥2 ≤ ε. (D.14)

We will consider separately the case of non-symmetric and symmetric prior πΘ. The latter case is more
challenging and requires new ideas with respect to earlier work, e.g. [4].

D.4.1 Proof for non-symmetric πΘ

Recall the state evolution sequence (αkt )k≥0 is defined by Eq. (5.13). For k ∈ N and t ∈ R≥0, we define
γk(β, t) = αkt − t. Hence γk(β, t) is defined by the recursion:

γk+1(β, t) = β2(1−mmse(γk(β, t) + t)), γ0(β, t) = β2 − 1− t .
mmse(γ) := E[(Θ− E[Θ | γΘ+

√
γG])2]

= inf
f :R→R

E[(Θ− f(γΘ+
√
γG))2]

(Expectation is with respect to (Θ, G) ∼ πΘ ⊗ N(0, 1).)
By using f(y) = y/(γ + 1) in the expression for mmse, we get

β2(1−mmse(γ + t)) ≥ β2(1− (γ + t+ 1)−1) ,

with the inequality strict unless πΘ is the Gaussian measure, and t = 0. This in turns implies β2(1 −
mmse(γ + t)) ≥ γ for γ = γ0(β, t).

Recall that Φ is defined in Eq. (5.15), and γ∗(β, t) is the unique global maximizer of γ 7→ Φ(γ, β, t) over
γ ∈ (0,∞). Taking the partial derivative of Φ(γ, β, t) with respect to γ, we obtain

∂

∂γ
Φ(γ, β, t) =

γ

2β2
− 1

2
+

1

2
mmse(γ + t),
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Therefore, γ∗(β, t) the first strictly positive solution of

γ∗ = β2(1−mmse(γ∗ + t)) . (D.15)

Note that γ∗ <∞ because the right-hand side is bounded by β2. Since by definition β2(1−mmse(γ∗(β, t)+

t)) > γ for γ ∈ [0, γ∗(β, t)), we have

lim
k→∞

γk(β, t) = γ∗(β, t) . (D.16)

Our next proposition provides a more quantitative estimate on this convergence.

Proposition D.4.1. Assume πΘ to have support in [−MΘ,MΘ] (not necessarily symmetric). Then there
exists β0 = β0(πΘ) > 0 depending only on πΘ, such that for all β ≥ β0(πΘ) and t ≥ 0, γ∗(β, t) is the unique
positive solution of the fixed point equation D.15.

Furthermore, for all k ≥ 0,

1− 2−k ≤ γk(β, t)

γ∗(β, t)
≤ 1.

Proof.[Proof of Proposition D.4.1] We define the non-decreasing function

H(γ) := β2(1−mmse(γ)) (D.17)

= β2
(
1− E

[
(Θ− fB(Y ; γ))2

])
, (D.18)

where Y = γΘ+
√
γG and

fB(y; γ) := E[Θ|γΘ+
√
γG = y] = F

( y√
γ
; γ
)
.

We then have (here we repeatedly use the fact that E[(Θ− fB(Y ; γ))h(Y )] = 0 for any function h such that
the expectation exists)

H ′(γ) = 2β2E
[(
Θ− fB(Y ; γ)

)
∂γfB(Y ; γ)

]
+ 2β2E

[(
Θ− fB(Y ; γ)

)
∂Y fB(Y ; γ)

(
Θ+ (G/2)γ−1/2

)]
= −β2γ−1/2E

[(
Θ− fB(Y ; γ)

)
Var(Θ|Y )G

]
≤ β2γ−1/2mmse(γ)1/2E

[
Var(Θ|Y )2G2

]1/2
≤ 2β2γ−1/2mmse(γ)1/2E

[
Var(Θ|Y )4

]1/4
≤ 2M

3/2
Θ β2γ−1/2mmse(γ)3/4 ,

where the last inequalities follow from Cauchy-Schwartz. Recalling that mmse(γ) ≤ 1/γ, we obtain

0 ≤ H ′(γ + t) ≤ 2M
3/4
Θ

β2

(γ + t)5/4
. (D.19)

And therefore, for γ ≥ γ0(β, t), and all β ≥ β0(πΘ), we proved that 0 ≤ H ′(γ + t) ≤ 1/2
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This implies

|γ∗(β, t)− γk+1(β, t)| = |H(t+ γ∗(β, t))−H(t+ γk(β, t))| ≤
1

2
|γ∗(β, t)− γk(β, t)| ,

which concludes the proof of the proposition.

Proposition D.4.2. For any β ≥ β∗ and t ≥ 0, we have

lim
n→∞

1

n
E
[
∥θ −m(y(t), t)∥22

]
= 1− γ∗(β, t)

β2
.

Proof.[Proof of Proposition D.4.2] This is a direct consequence of discussions in Section 2.4 of [152]. In
particular, Proposition 2.2.

We finally notice that

1

n
E
{
∥m(y(t), t)− m̂k(y(t), t)∥22

}
=

1

n
E
{
∥θ − m̂k(y(t), t)∥22

}
− 1

n
E
{
∥θ −m(y(t), t)∥22

}
. (D.20)

Therefore taking the limit n → ∞, using Proposition D.4.2, and noticing that all the expectations are of
bounded random variables, we get

p-lim
n→∞

1

n
∥m(y(t), t)− m̂k(y(t), t)∥22 ≤

γ∗(β, t)

β2
− γk(β, t)

β2
. (D.21)

The proof is completed by applying Proposition D.4.1.

D.4.2 Proof for symmetric πΘ

We now consider the case of symmetric πΘ. In this case, the posterior µX,0(dθ) is symmetric under flip
θ → −θ, and the original vector θ is identifiable only up to a global sign. We let v1 = v1(X) be a uniformly
random eigenvector of X, and denote by P0 the joint distribution of θ,X,v1. (Since the top eigenvalue is
almost surely non-degenerate, there are two possible choices for v1 given X.) We denote by P+ the same
distribution, conditioned to ⟨v1,θ⟩ > 0:

P+(dθ,dX,dv1) =
1

P0(⟨v1,θ⟩ > 0)
P0(dθ,dX,dv1)1{⟨v1,θ⟩ ≥ 0} (D.22)

= 2P0(dθ,dX,dv1)1{⟨v1,θ⟩ ≥ 0} . (D.23)

Note that under P0, v1, and θ are conditionally independent given X, while they are not under P+. Also,
the marginal law of X,v1 is the same under the two distributions.

Conditionally on X,v1 ∼ P0, we let θ+
1 ,θ

+
2 , . . . be i.i.d. vectors with distribution P+(θ ∈ · |X,v1)

and θ0
1,θ

0
2, . . . be i.i.d. vectors with distribution P0(θ ∈ · |X,v1) (independent of the θ+

i ’s). We will use
the fact that, by an application of Remark D.1.1, if X = βθθT/n+W ,(

X,v1,θ
0
1, . . . ,θ

0
k,θ

+
1 , . . . ,θ

+
k

)
d
=
(
X,v1,θ,θ

0
1 . . . ,θ

0
k−1,θ

+
1 , . . . ,θ

+
k

)
. (D.24)
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We first prove a concentration result ⟨θ+
1 ,θ

+
2 ⟩.

Lemma D.4.1. Let D(β) be the set of discontinuity points of t 7→ γ∗(t, β). Then, for all t ∈ R≥0 \ D(β),
we have

lim
n→∞

1

n2
E[(⟨θ+

1 ,θ
+
2 ⟩ − E[⟨θ+

1 ,θ
+
2 ⟩])2] = 0 , (D.25)

lim
n→∞

1

n
E[⟨θ+

1 ,θ
+
2 ⟩] =

γ∗(β, t)

β2
. (D.26)

Remark D.4.1. Note that D(β) is countable by monotonicity of γ∗( · , β), and further it is empty for all
β ≥ β∗(πΘ). Hence, in applying this lemma, we will disregard the set of exceptional points D(β).

Proof.[Proof of Lemma D.4.1] We divide the proof into two parts depending on the value of t.

Case I: t > 0 . We begin with a useful concentration result.

Lemma D.4.2. For all 0 < t1 < t2, we have

lim
n→∞

1

n2

∫ t2

t1

E
[(
⟨θ0

1,θ
0
2⟩ − E[⟨θ0

1,θ
0
2⟩]
)2]

dt = 0 . (D.27)

We present the proof of this fact in Appendix D.7.1. A similar statement is proven in [125].
Let us next show that this implies the desired concentration result:

E
[
(⟨θ+

1 ,θ
+
2 ⟩ − E[⟨θ+

1 ,θ
+
2 ⟩])2

]
≤E

[
(⟨θ+

1 ,θ
+
2 ⟩ − E[⟨θ0

1,θ
0
2⟩])2

]
=
E
[
(⟨θ0

1,θ
0
2⟩ − E[⟨θ0

1,θ
0
2⟩])21⟨v1,θ1

0⟩≥0,⟨v1,θ0
2⟩≥0)

]
P(⟨v1,θ

0
1⟩ ≥ 0, ⟨v1,θ

0
2⟩ ≥ 0)

(i)

≤4E[(⟨θ0
1,θ

0
2⟩ − E[⟨θ0

1,θ
0
2⟩])2], (D.28)

Here in (i) we made use of the fact that v1,θ
0
1,θ

0
2 are conditionally independent given X, implying

P(⟨v1,θ
0
1⟩ ≥ 0, ⟨v1,θ

0
2⟩ ≥ 0|X) = P(⟨v1,θ

0
1⟩ ≥ 0|X)2 =

1

4
, (D.29)

and therefore the same identity holds unconditionally.
Recall that, by [125], it holds that (for any t ≥ 0)

lim
n→∞

1

n2
E[⟨θ0

1,θ
0
2⟩2] = lim

n→∞

1

n2
E
{∥∥E[θθT

∣∣X]∥∥2
F

}
=
γ∗(β, t)

2

β4
. (D.30)

Using this, together with the concentration property (D.27), we get, for all 0 < t1 < t2,

lim
n→∞

1

n2

∫ t2

t1

(
E[⟨θ0

1,θ
0
2⟩]−

γ∗(β, t)

β2

)2
dt = 0 .

Since t 7→ E[⟨θ0
1,θ

0
2⟩] = E[∥E[θ|X,y(t)]∥2] is non-decreasing (by Jensen), the last limit holds pointwise.
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Namely, at all continuity points of t 7→ γ∗(β, t),

lim
n→∞

1

n
E[⟨θ0

1,θ
0
2⟩] =

γ∗(β, t)

β2
. (D.31)

Using this and (D.30), we get, on t ∈ (0,∞) \D(β)

lim
n→∞

1

n2
E[(⟨θ0

1,θ
0
2⟩ − E[⟨θ0

1,θ
0
2⟩])2] = 0 , (D.32)

and therefore, using (D.28), we obtain the claim (D.25).
Finally, notice that the following is a consequence of Eq. (D.28):

lim
n→∞

(
1

n
E[⟨θ0

1,θ
0
2⟩]−

1

n
E[⟨θ+

1 ,θ
+
2 ⟩]
)2

= 0.

Putting the last limit together with Eq. (D.31) implies Eq. (D.26).

Case II: t = 0. We begin with establishing the following lemma.

Lemma D.4.3. Let β∗(πΘ) be as in the statement of Theorem 5.3.1. Then for any β ≥ β∗(πΘ) and any
t ≥ 0, we have

lim
n→∞

1

n4
E
[(
⟨θ0

1,θ
0
2⟩2 − E[⟨θ0

1,θ
0
2⟩2]
)2]

= 0 . (D.33)

Proof. Recall that Φ is defined in Eq. (5.15). We let γ∗(β, t) be the first stationary point of γ 7→ Φ(γ, β, t)

on (0,∞). Following the notation of [125], we let

Dt := {β > 0 : γ 7→ Φ(γ, β, t) has a unique minimizer} .

By the assumptions of Theorem 5.3.1, we know that [β∗,∞) ⊆ Dt. Then, the claim of the lemma is a direct
consequence of [125, Theorem 20].

By Lemma D.4.3, and repeating the argument of Eq. (D.28), we get

E
[
(⟨θ+

1 ,θ
+
2 ⟩2 − E[⟨θ+

1 ,θ
+
2 ⟩2])2

]
≤E

[
(⟨θ+

1 ,θ
+
2 ⟩2 − E[⟨θ0

1,θ
0
2⟩2])2

]
=
E
[
(⟨θ0

1,θ
0
2⟩2 − E[⟨θ0

1,θ
0
2⟩2])21⟨v1,θ1

0⟩≥0,⟨v1,θ0
2⟩≥0)

]
P(⟨v1,θ

0
1⟩ ≥ 0, ⟨v1,θ

0
2⟩ ≥ 0)

≤4E[(⟨θ0
1,θ

0
2⟩2 − E[⟨θ0

1,θ
0
2⟩2])2] . (D.34)

Therefore, by the last lemma,

lim
n→∞

1

n4
E
[(
⟨θ+

1 ,θ
+
2 ⟩2 − E[⟨θ+

1 ,θ
+
2 ⟩2]

)2]
= 0 . (D.35)

Let ν0 :=
√
nv1(X)/∥v1(X)∥2. By [28], we know that ⟨θ,ν0⟩2/n2 d

= ⟨θ0
1,ν0⟩2/n2 P→ 1 − β−2. Since
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P+ is contiguous to P0, we obtain ⟨θ+
1 ,ν0⟩/n P→

√
1− β−2. and therefore:

p-lim
n→∞

1

n
∥θ+

1 − ν0∥22 = 2− 2
√
1− β−2. (D.36)

Recall that γ∗(β, t) is the first positive stationary point of γ 7→ Φ(γ, β, t). From Eqs. (D.34) and (D.35),
we see that |⟨θ+

1 ,θ
+
2 ⟩|/n = E[⟨θ,θ0

1⟩2]1/2/n + oP (1). Further by[125, Theorem 2], we obtain |⟨θ,θ0
1⟩|/n =

β−2γ∗(β, 0) + oP (1), whence |⟨θ+
1 ,θ

+
2 ⟩|/n = β−2γ∗(β, 0) + oP (1).

By Cauchy-Schwarz,

1

n
∥θ+

1 − θ+
2 ∥22 ≤

2

n
∥θ+

1 − ν0∥22 +
2

n
∥θ+

2 − ν0∥22 = 4− 4
√

1− β−2 + oP (1),

hence ⟨θ+
1 ,θ

+
2 ⟩/n ≥ 2

√
1− β−2 − 1 + oP (1). Recall that |⟨θ+

1 ,θ
+
2 ⟩|/n = β−2γ∗(β, 0) + oP (1), then for β0

large enough and all β > β0, it holds that ⟨θ+
1 ,θ

+
2 ⟩/n = β−2γ∗(β, 0)+oP (1). Applying bounded convergence

(since |⟨θ+
1 ,θ

+
2 ⟩/n| ≤ MΘ), we see that E[(⟨θ+

1 ,θ
+
2 ⟩/n − β−2γ∗(β, 0))

2] = on(1), thus concluding the proof
of Lemma D.4.1 for t = 0.

Next, we will apply Lemma D.4.1 to prove Lemma 5.6.1. By the state evolution of the AMP algorithm,
cf. Proposition 5.6.1, we see that

1

n
⟨θ+, m̂k(y(t), t)⟩ P→ E[E[Θ | αktΘ+ (αkt )

1/2G]2] = 1−mmse(αkt ),

1

n
∥m̂k(y(t), t)∥22

P→ E[E[Θ | αktΘ+ (αkt )
1/2G]2] = 1−mmse(αkt ).

By Proposition D.4.1, we see that as k →∞, αkt converges linearly to γ∗(β, t)+ t, which further implies that
1−mmse(αkt ) converges linearly to 1−mmse(γ∗(β, t)+ t) = 1−β−2γ∗(β, t). Furthermore, the convergence is
uniform in t ∈ [0, T ]. Therefore, for all ε > 0, there exists K(β, T, ε) ∈ N>0 depending only on (β, T, ε, πΘ),
such that for all k ≥ K(β, T, ε),

∣∣E[E[Θ | αktΘ+ (αkt )
1/2G]2]− β−2γ∗(β, t)

∣∣ ≤ ε

2
.

and therefore, for all k ≥ K(β, T, ε), with high probability,∣∣∣∣ 1n ⟨θ+, m̂k(y(t), t)⟩ − β−2γ∗(β, t)

∣∣∣∣ ≤ ε , (D.37)∣∣∣∣ 1n∥m̂k(y(t), t)∥22 − β−2γ∗(β, t)

∣∣∣∣ ≤ ε . (D.38)

By Lemma D.4.1, it holds that p-limn→∞⟨θ+
1 ,θ

+
2 ⟩/n = β−2γ∗(β, t). Since θ+

1 and θ+
2 are conditionally

independent given (X,y(t),v1(X)) this in particular implies:

1

n
∥m(y(t), t)∥22 = β−2γ∗(β, t) + oP (1) . (D.39)

Further θ+ and m(y(t), t) are conditionally independent given (X,y(t),v1(X)). Hence, from Eq. (D.37), it
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follows that with high probability∣∣∣∣ 1n ⟨m(y(t), t), m̂K(β,T,ε)(y(t), t)⟩ − −β−2γ∗(β, t)

∣∣∣∣ ≤ 2ε . (D.40)

Putting together (D.38), (D.39), (D.40), we get

1

n
∥m(y(t), t)− m̂K(β,t,ε)(y(t), t)∥22 ≤ 10 ε ,

with high probability, thus completing the proof of Lemma 5.6.1.

D.5 Proof of Lemma 5.6.2

The subsequent proof is analogous to the one of [4, Lemma 4.9]. Recall that Φ is defined in Eq. (5.15), and
(for β > β∗), γ∗(β, t) is the unique global maximizer of γ 7→ Φ(γ, β, t) over γ ∈ (0,∞). Taking the partial
derivative of Φ(γ, β, t) with respect to γ, we obtain

∂

∂γ
Φ(γ, β, t) =

γ

2β2
− 1

2
+

1

2
mmse(γ + t),

where we recall that, for (Θ, G) ∼ πΘ ⊗ N(0, 1),

mmse(γ) = E
[
(Θ− E[Θ | γΘ+

√
γG])2

]
.

Therefore, γ∗(β, t) is a solution to the following fixed point equation.

γ = β2E[E[Θ | (γ + t)Θ +
√
γ + tG]2]. (D.41)

For any t1 < t2, we have

lim
n→∞

1

n
E [∥m(y(t2), t2) .−m(y(t1), t1)∥22

]
=

= lim
n→∞

1

n

{
E
[
∥θ −m(y(t1), t1)∥22

]
− E

[
∥θ −m(y(t2), t2)∥22

]}
=
γ∗(β, t2)− γ∗(β, t1)

β2
. (D.42)

By Lemma 5.6.1 we know that for all t ≥ 0, with high probability ∥m(y(t), t) − m̂k(y(t), t)∥22/n ≤ εk,
for some deterministic constants εk satisfying εk → 0+ as k → ∞. Therefore, using the concentration of
∥m̂k(y(t2), t2)−mk(y(t1), t1)∥22/n, we get

p-lim
n→∞

1

n
∥m(y(t2), t2)−m(y(t1), t1)∥22 =

γ∗(β, t2)− γ∗(β, t1)
β2

. (D.43)

Note that t 7→ m(y(t), t) is a bounded martingale. Hence, for any fixed constant c, the process Yn,t :=

(Mn,t−c)+ is a positive bounded submartingale, where Mn,t = ∥m(y(t), t)−m(y(t1), t1)∥2/
√
n. By Doob’s
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maximal inequality, we then see that

P

(
sup

t∈[t1,t2]

Yn,t ≥ a
)
≤ 1

a
E[Yn,t2 ] ≤

1

a
E[Y 2

n,t2 ]
1/2

for any a > 0. Setting c =
√
γ∗(β, t2)− γ∗(β, t1)/β, we have p-limn→∞M2

n,t2 = c2 by Eq. (D.43). Since
Mn,t is bounded, then for any fixed a > 0, we obtain:

lim sup
n→∞

P

(
sup

t∈[t1,t2]

Mn,t ≥ c+ a

)
≤ lim sup

n→∞
P

(
sup

t∈[t1,t2]

Yn,t ≥ a
)

≤1

a
lim
n→∞

E
[
(Mn,t2 − c)2

]1/2
= 0.

A lower bound can be derived analogously. Thus,

p-lim
n→∞

sup
t∈[t1,t2]

M2
n,t =

γ∗(β, t2)− γ∗(β, t1)
β2

,

which yields

p-lim
n→∞

sup
t∈[t1,t2]

1

n
∥m(y(t), t)−m(y(t1), t1))∥22 =p-lim

n→∞

1

n
∥m(y(t2), t2)−m(y(t1), t1)∥22

=
γ∗(β, t2)− γ∗(β, t1)

β2
.

Therefore, in order to prove the lemma, it suffices to show the existence of Creg > 1 depending uniquely on
(β, πΘ), such that

|γ∗(β, t2)− γ∗(β, t1)|
β2

≤ Creg|t1 − t2|,

which follows from Proposition D.4.1. This concludes the proof of the lemma.

D.6 Proof of Lemma 5.6.3

Before proving Lemma 5.6.3, we establish a simple estimate on the conditional variance.

Lemma D.6.1. There exists a constant Cconv > 0 depending only on πΘ, such that

E
[
Var(Θ | β2Θ+ βG)

]
≤ C−1

conv exp(−4Cconvβ
2)/2. (D.44)

Without loss, we can and will assume that Cconv < 1.

Proof. We denote by {x1, x2, · · · , xs} the support of πΘ and assume without loss of generality x1 < x2 <

· · · < xs. Define θ̂ : R→ {x1, x2, · · · , xs} by

θ̂(y) := argmin
(
|x− y| : x ∈ supp(πΘ)

)
.

In case of ties, we choose the smallest value. We immediately see that θ̂(y) = xi if and only if (xi−1+xi)/2 <
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y ≤ (xi + xi+1)/2 (with the convention that x0 = −∞ and xs+1 = +∞). Let Y = Θ+ β−1G, then

E[Var[Θ | β2Θ+ βG]] ≤E[(Θ− θ̂(Y ))2].

Let δΘ = min{|xi − xi+1|/2 : i ∈ [s− 1]}. We then have

E[(Θ− θ̂(Y ))2 | Θ = xi]

≤0× P
(
Y ∈

(
(xi−1 + xi)/2, (xi + xi+1)/2

]
| Θ = xi

)
+ 4M2

ΘP
(
Y ∈

(
(xi−1 + xi)/2, (xi + xi+1)/2

]c
| Θ = xi

)
≤ 16M2

Θ

δΘβ
√
2π
e−δ

2
Θβ

2/8,

where to arrive at the last inequality we make use of Lemma D.1.3. Combining the above bounds, we obtain
that E[(Θ− θ̂(Y ))2] ≤ 16M2

Θ

δΘβ
√
2π
e−δ

2
Θβ

2/8. Using this fact, we conclude that there exists a constant Cconv > 0

that is a function of πΘ only, such that Eq. (D.44) holds.

Proof.[Proof of Lemma 5.6.3] By the state evolution of Bayes AMP, Proposition 5.6.1, we have

1

n
∥Dαk

t
(m̂k(y(t), t))∥2F

P→ E[Var[Θ | αktΘ+ (αkt )
1/2G]]. (D.45)

Since α0
t = β2 − 1 and αkt ≥ α0

t (this follows from instance by the fact that γ 7→ mmse(γ) is non-increasing,
see the discussion at the beginning of Section D.4.1), we conclude that for β > 2,

E[Var[Θ | αktΘ+ (αkt )
1/2G]] ≤ E[Var[Θ | β2Θ/4 + βG/2]]. (D.46)

By Lemma D.6.1 below, we obtain that there exists a constant Cconv > 0 depending uniquely on πΘ, such
that

E[Var[Θ | β2Θ/4 + βG/2]] ≤ C−1
conv exp(−Cconvβ

2)/2. (D.47)

Equation (5.46) follow from Eqs. (D.45) to (D.47).
By definition bkt = β2E[Var[Θ | αktΘ + (αkt )

1/2G]], which by Eqs. (D.46) and (D.47) is no larger than
C−1

conv exp(−Cconvβ
2)/2, thus completing the proof of Eq. (5.47).

As for Eqs. (5.48) and (5.49), we will in fact show a stronger result and prove that these two inequalities
hold for all k ≤ k0(β) + 1, via induction over k. We already observed that, with probability 1 − on(1) we
have ∥X∥op ≤ β + ∥W ∥op ≤ β + 2 [7], and will work on this high-probability event.

For the base case k = 0, the claim directly follows as m̂0(y1, t) = m̂0(y2, t) = E[Θ | α0
tΘ+(α0

t )
1/2G = ν]

and hence p̂0(y1, t) = p̂0(y2, t). Now suppose for all k ≤ k1 and all y1, y2, we have

1√
n
∥m̂k(y1, t)− m̂k(y2, t)∥2 ≤

Lip0(β, k)√
n

∥y1 − y2∥2,

1√
n
∥p̂k(y1, t)− p̂k(y2, t)∥2 ≤

Lip0(β, k)√
n

∥y1 − y2∥2,
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where Lip0(β, k) > 0 is a function of (β, k) only. We then prove that the above statement also holds for
k = k1 + 1.

Recalling the definition F(x;α) := E[Θ | αΘ+ α1/2G = z], a computation of the derivatives shows that
the mappings

z 7→ F(z;αk+1
t ), z 7→ Φ−1

αk+1
t

(
F(z;αk+1

t )
)
,

are M2
Θ-Lipschitz and MΘ-Lipschitz, respectively, where supp(πΘ) ⊆ [−MΘ,MΘ]. As a result, on the event

∥X∥op ≤ β + 2, we have

1√
n
∥m̂k1+1(y1, t1)− m̂k1+1(y2, t2)∥2

≤M
2
Θ√
n
∥βX(m̂k1(y1, t)− m̂k1(y2, t)) + y1 − y2 − bk1t (m̂k1−1(y1, t)− m̂k1−1(y2, t))∥2

≤M
2
Θ(β

2 + β + 1)Lip0(β, k1)√
n

∥y1 − y2∥2 +
M2

Θ√
n
∥y1 − y2∥2 +

C−1
convM

2
ΘLip0(β, k1 − 1)√

n
∥y1 − y2∥2.

Similarly, under the p-parameterization we have

1√
n
∥p̂k1+1(y1, t)− p̂k1+1(y2, t)∥2

≤MΘ√
n
∥βX(m̂k1(y1, t)− m̂k1(y2, t)) + y1 − y2 − bk1t (m̂k1−1(y1, t)− m̂k1−1(y2, t))∥2

≤MΘ(β
2 + β + 1)Lip0(β, k1)√

n
∥y1 − y2∥2 +

MΘ√
n
∥y1 − y2∥2 +

C−1
convMΘLip0(β, k1 − 1)√

n
∥y1 − y2∥2.

As a result, we see that setting Lip0(β, k1 + 1) = M2
Θ((β

2 + β + 1)Lip0(β, k1) + 1 + C−1
convLip0(β, k1 − 1))

concludes the proof of the induction step. This further completes the proof of Eq. (5.48) and Eq. (5.49),
thus finishing the proof of the lemma.

D.7 Proof of Lemma 5.6.5

We first state a simplified version of Lemma 5.6.4. More precisely, for q ∈ (0, 1), note that
√
q log(e/q) ≤

3q1/4. If we substitute this result into Eq. (5.51), normalize t1, t2, and set ξ = ∆1/6, q = ∆2/3, then we
obtain the next corollary.

Corollary D.7.1. Under the conditions of Lemma 5.6.4, for all ∆ > 0 and M > 0, we have

P

 sup
t1,t2∈[0,M ]n,

∥t1∥2
2/n≤∆,∥t2∥2

2/n≤∆

∥ diag(t1)W diag(t2)∥op ≥ 4C ′M5/3∆1/6

 ≤ Ce−cn∆2/3M−4/3

. (D.48)
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We denote by E
(4)
β,n the event depicted by Eq. (D.48), with ∆ = ∆(β). More precisely, let

E
(4)
β,n :=

{
sup

t1,t2∈[0,MΘ]n,∥t1∥2
2/n≤∆(β),∥t2∥2

2/n≤∆(β)

∥ diag(t1)W diag(t2)∥op ≥ 4C ′M
5/3
Θ ∆(β)1/6

}
. (D.49)

Throughout the proof, we will make use of the following functions:

∆(β) := C−1
conve

−Cconvβ
2

+M2
Θ · (2β2 + 2β + 4 + 2C−1

conve
−Cconvβ

2

)e−Cconvβ
2/4,

ρ(β) := β2M2
Θ∆(β) + 4βC ′M

5/3
Θ ∆(β)1/6, (D.50)

F (β) := ρ(β) +M2
Θ · C−1

conve
−Cconvβ

2

.

We can and will choose β0 large enough such that F (β) ≤ 1/2 holds for all β ≥ β0. To simplify notations,
we define

mk = m̂k(y1, t),

m̃k = m̂k(y2, t),

pk = Ψ−1
αk

t
(mk),

p̃k = Ψ−1
αk

t
(m̃k).

We will choose r(β) (depending uniquely on πΘ, β) small enough so that 2r(β) · (Lip0(β) + 1) · (M2
Θ + 1) ≤

2e−Cconvβ
2/4. Notice that indeed the choice of r(β) can only depend on (β, πΘ). By Lemma 5.6.3, for all

y1,y2 ∈ Bn(y(t), r(β)), we know that

1√
n
∥pk∗ − p̃k∗∥2 ≤

Lip0(β)√
n
∥y1 − y2∥2 ≤ 2 exp

(
−1

4
Cconvβ

2

)
(D.51)

for k∗ ∈ {k0(β), k0(β)± 1}. Without loss, we can and will assume that Lip0(β) ≥ 2MΘ.
We define Eβ,L,δ,ε,n = E

(1)
L,δ,ε,n ∩E

(2)
β,L,δ,n ∩E

(3)
β,L,δ,ε,n. The subsequent proof will be based on the following

lemma:

Lemma D.7.1. On the set Eβ,L,δ,ε,n, if in addition we have

1√
n
∥pk∗ − p̃k∗∥2 ≤

Lip0(β)√
n
∥y1 − y2∥2 ≤ 2 exp

(
−1

4
Cconvβ

2

)
(D.52)

holds for all k∗ ∈ {k, k + 1, k + 2} with k0(β) − 1 ≤ k ≤ K(β, T, ε) − 3, then it also holds for k∗ = k + 3.
Furthermore, the following inequality holds for all k0(β)− 1 ≤ k ≤ K(β, T, ε)− 3:

1√
n
∥pk+3 − p̃k+3∥2 ≤

ρ(β)√
n
∥pk+2 − p̃k+2∥2 +

ρ(β)√
n
∥pk+1 − p̃k+1∥2 +

1√
n
∥y1 − y2∥2, (D.53)

where we recall that ρ is defined in Eq. (D.50).

Lemma D.7.1 and Eq. (D.51) imply the following upper bound via induction argument:

1√
n
∥pK(β,T,ε) − p̃K(β,T,ε)∥2 ≤

1 + 2Lip0(β)

1− 2ρ(β)
× 1√

n
∥y1 − y2∥2. (D.54)
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Define

Lip∗(β) :=
MΘ · (1 + 2Lip0(β))

1− 2ρ(β)
. (D.55)

The claim of the lemma follows from Eq. (D.54) using the fact that Ψ
α

K(β,T,ε)
t

has Lipschitz constant MΘ.
The remainder of this section is dedicated to proving Lemma D.7.1.

Proof.[Proof of Lemma D.7.1] The condition of Lemma D.7.1 assumes that for all k∗ ∈ {k, k + 1, k + 2},

1√
n
∥pk∗ − p̃k∗∥2 ≤ 2 exp

(
−1

4
Cconvβ

2

)
. (D.56)

Next, we will make use of the Jacobian matrices given in Eq. (5.45) to provide a preliminary upper bound
for ∥pk+3 − p̃k+3∥2.

On the set Eβ,L,δ,ε,n, for all m,m′ ∈ [aΘ, bΘ]
n and k0(β) ≤ k ≤ K(β, T, ε)− 3, it holds that

∥βD(m)XD(m′)∥op ≤M2
Θ · (β2 + 2β), ∥bktD(m)D(m′)∥op ≤M2

Θ · C−1
conv exp(−Cconvβ

2),

∥D(m)∥op ≤MΘ,

where we used Eq. (5.47). Combining these upper bounds and Eq. (5.44), we obtain a crude upper bound
for ∥pk+3 − p̃k+3∥2:

1√
n
∥p̃k+3 − pk+3∥2

≤M
2
Θ · (β2 + β + 1)√

n
∥p̃k+2 − pk+2∥2 +

M2
Θ · C−1

conv exp(−Cconvβ
2)√

n
∥p̃k+1 − pk+1∥2

+
M2

Θ√
n
∥y1 − y2∥2

(i)

≤M2
Θ · (2β2 + 2β + 4 + 2C−1

conv exp(−Cconvβ
2)) exp

(
−1

4
Cconvβ

2

)
,

where to obtain (i), we use the following facts: (1) ∥p̃k+i − pk+i∥2/
√
n ≤ 2e−Cconvβ

2/4 for all i ∈ {1, 2};
(2) ∥y1 − y2∥2/

√
n ≤ 2r(β) ≤ 2e−Cconvβ

2/4. Since y(t) ∈ Bn(y(t), r(β)), we can also control the difference
between pk+3, p̃k+3 and p̂k+3(y(t), t) following exactly the same manner, and produce exactly the same
upper bound.

Before completing the proof, it is useful to establish the following lemma.

Lemma D.7.2. For any πΘ such that supp(πΘ) ⊆ [−MΘ,MΘ] and any γ > 0, the mapping

Q(p) := Var[Θ | γΘ+
√
γG = Γ−1

γ (p)]

is 3M2
Θ-Lipschitz continuous.

Proof.[Proof of Lemma D.7.2] Let h = Γ−1
γ (p). Taking the derivative of Q(·), we obtain via chain rule

dQ

dp
=

dQ

dh
· dh
dp

=
(
E[Θ2(Θ− E[Θ | γΘ+

√
γG = h]) | γΘ+

√
γG = h]−
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2E[Θ | γΘ+
√
γG = h] Var[Θ | γΘ+

√
γG = h]) ·Var[Θ | γΘ+

√
γG = h]−1/2.

Applying Cauchy–Schwarz inequality and the bounded support assumption,

∣∣E[Θ2(Θ− E[Θ | γΘ+
√
γG = h]) | γΘ+

√
γG = h]

∣∣ ≤M2
Θ ·Var[Θ | γΘ+

√
γG = h]1/2,

|E[Θ | γΘ+
√
γG = h] Var[Θ | γΘ+

√
γG = h]| ≤M2

Θ ·Var[Θ | γΘ+
√
γG = h]1/2.

Putting together the above analysis, we conclude that ∥dQdp ∥∞ ≤ 3M2
Θ, thus completing the proof of the

lemma.

By Eq. (5.50), on the set Eβ,L,δ,ε,n, it holds that ∥Dαk
t
(m̂k(y(t), t))∥2F /n ≤ C−1

conv exp(−Cconvβ
2). Invoking

this result, triangle inequality, Lemma D.7.2, and Cauchy-Schwartz inequality, we can conclude that for all
ζk+3 that lies on the line segment connecting pk+3 and p̃k+3, it holds that

1

n
∥Dαk+3

t
(Ψαk+3

t
(ζk+3))∥2F

≤ 1

n
∥Dαk+3

t
(Ψαk+3

t
(p̂k+3(y(t), t)))∥2F +

3M2
Θ

n
∥p̂k+3(y(t), t)− ζk+3∥1

≤C−1
conv exp(−Cconvβ

2) +M2
Θ · (2β2 + 2β + 4 + 2C−1

conv exp(−Cconvβ
2)) exp

(
−1

4
Cconvβ

2

)
=∆(β) ,

where we recall that ∆(β) is defined in Eq. (D.50). Similarly, we can derive that for all ζk+2 that is on the
line segment connecting pk+2 and p̃k+2,

1

n
∥Dαk+2

t
(Ψαk+2

t
(ζk+2))∥2F ≤ ∆(β).

In addition, note that for all ζk+2, ζk+3 as above, it holds that

max
{
∥Dαk+2

t
(Ψαk+2

t
(ζk+2))∥∞, ∥Dαk+3

t
(Ψαk+2

t
(ζk+2))∥∞

}
≤MΘ.

Therefore, if we view the diagonal elements of matrices Dαk+2
t

(Ψαk+2
t

(ζk+2)) and Dαk+3
t

(Ψαk+3
t

(ζk+2)) as
vectors, then they belong to the set {x ∈ [0,MΘ]

n : ∥x∥22/n ≤ ∆(β)}. Hence, recalling the definition of event
E

(4)
β,n in Eq. Eq. (D.49), we see that for all ζk+2 and ζk+3, the following inequalities hold on Eβ,L,δ,ε,n ∩ E

(4)
β,n:

∥βD(ζk+3)XD(ζk+2)∥op ≤
β2

n
∥D(ζk+3)θθTD(ζk+2)∥op + β∥D(ζk+3)WD(ζk+2)∥op

≤ β2M2
Θ∆(β) + 4βC ′M

5/3
Θ ∆(β)1/6,

∥bktD(ζk+3)D(ζk+1)∥op ≤M2
Θ · C−1

conv exp(−Cconvβ
2).

Putting together the above inequalities and Eq. (5.45), we obtain that

1√
n
∥pk+3 − p̃k+3∥2
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≤β
2M2

Θ∆(β) + 4βC ′M
5/3
Θ ∆(β)1/6√

n
∥pk+2 − p̃k+2∥2+

M2
Θ · C−1

conv exp(−Cconvβ
2)√

n
∥pk+1 − p̃k+1∥2 +

MΘ√
n
∥y1 − y2∥2

≤ρ(β)√
n
∥pk+2 − p̃k+2∥2 +

M2
Θ · C−1

conv exp(−Cconvβ
2)√

n
∥pk+1 − p̃k+1∥2 +

MΘ√
n
∥y1 − y2∥2 (D.57)

(d)

≤ Lip0(β) · ρ(β) + Lip0(β) ·M2
Θ · C−1

conve
−Cconvβ

2

+MΘ√
n

· ∥y1 − y2∥2

≤Lip0(β) · F (β) +MΘ√
n

· ∥y1 − y2∥2
(e)

≤ Lip0(β)√
n
· ∥y1 − y2∥2,

where in step (d) we used Eq. (D.52) with k∗ ∈ {k + 1, k + 2}, and in step (e) we make use of the following
facts: (1) Lip0(β) ≥ 2MΘ; (2) F (β) ≤ 1/2 for all β ≥ β0.

Recall that 2r(β) · (Lip0(β) + 1) · (M2
Θ + 1) ≤ 2e−Cconvβ

2/4. Therefore, we can conclude that Eq. (D.52)
holds for k∗ = k+3. In addition, for β0 large enough clearly we have M2

Θ ·C−1
conv exp(−Cconvβ

2) < ρ(β) holds
for all β ≥ β0. As a result, we can deduce from Eq. (D.57) that Eq. (D.53) holds for all desired k, thus
completing the proof of Lemma D.7.1.

D.7.1 Proof of Lemma D.4.2

Throughout this proof, we work with X,θ0
1,θ

0
2 with distribution P0 defined in Section D.4.2. We will lighten

notations by writing θi := θ0
i .

We write the posterior distribution as

µt(dθ) =
1

Z(t)
eHt(θ) π⊗n

Θ (dθ) , (D.58)

Ht(θ) :=
β

2
⟨θ,Xθ⟩ − β2

4n
∥θ∥42 + ⟨y(t),θ⟩ −

t

2
∥θ∥2 . (D.59)

In this proof, we will never consider the joint distribution of these objects at two distinct values of t. Hence,
we can carry out derivations with

y(t) = tθ∗ +
√
t z , (D.60)

for a fixed z ∼ N(0, In). Further, we will write µt(F (θ1,θ2)) :=
∫
F (θ1,θ2)µ

⊗2
t (dθ). Finally, we define

Ut(θ) =
2

n

∂

∂t
Ht(θ) (D.61)

=
1

n

{
2⟨θ,θ∗⟩+

1√
t
⟨z,θ⟩ − ∥θ∥22

}
. (D.62)

Using Gaussian integration by parts and Remark D.1.1, we have

E
[
µt
(
Ut(θ)

)]
=

1

n
E
[
µt
(
⟨θ1,θ2⟩

)]
, (D.63)
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E
[
µt

(
Ut(θ1)⟨θ1,θ2⟩

)]
=

1

n
E
[
µt
(
⟨θ1,θ2⟩2

)]
. (D.64)

Recall that supp(πΘ) ⊆ [−MΘ,MΘ], and therefore |⟨θ1,θ2⟩/n| ≤M2
Θ, which further yields∣∣∣∣E[Ut(θ1)

1

n
⟨θ1,θ2⟩

]
− E

[
Ut(θ)

]
E
[ 1
n
⟨θ1,θ2⟩

]∣∣∣∣ ≤M2
Θ · E

[∣∣∣Ut(θ)− E
[
Ut(θ)

]∣∣∣] . (D.65)

Combining Eqs. (D.63) to (D.65) gives

1

n2
E
[
(⟨θ1,θ2⟩ − E[⟨θ1,θ2⟩])2

]
≤M2

Θ · E
[∣∣∣Ut(θ)− E

[
Ut(θ)

]∣∣∣] . (D.66)

Next, we will prove that the right hand side of Eq. (D.66) is on(1) for all t > 0, thus completing the proof
of the lemma.

We define the free energy density:

ϕ(t) :=
1

n
log
{∫

eHt(θ) π⊗n
Θ (dθ)

}
.

We can compute the first and second derivatives of ϕ:

∂ϕ

∂
√
t
(t) =

√
tµt
(
Ut(θ)

)
, (D.67)

∂2ϕ

∂(
√
t)2

(t) = ntVarµt

(
Ut(θ)

)
+

1

n
µt

(
2⟨θ∗,θ⟩ − ∥θ∥22

)
.

Therefore, defining ψ(r) := ϕ(r2), we obtain that r 7→ ψ̄(r) := ψ(r) + 3M2
Θr

2/2 is convex for r ∈ (0,∞).
Applying Lemma D.1.1 to the functions ψ̄(r) and Eψ̄(r), for 0 < ε < r/2 we have

E [|ψ′(r)− E[ψ′(r)]|] ≤E[ψ′(r + ε)− ψ′(r − ε)] + 3

ε
sup

|r′−r|≤ε
E [|ψ(r′)− E[ψ(r′)]|] + 6M2

Θε. (D.68)

The next lemma proves that sup|r′−r|≤ε E [|ψ(r′)− E[ψ(r′)]|] is small.

Lemma D.7.3. There exists a constant C(t, β, πΘ) > 0 which is a function of (t, β, πΘ) only, and is bounded
compact intervals [t1, t2] ⊆ (0,∞) such that

E [|ϕ(t)− E[ϕ(t)]|] ≤ C(t, β, πΘ)n−1/2.

Proof. Letting X = βθ∗θ
T/n+W , consider the mapping

f : (W , z) 7→ ϕ(t).

We denote by Wij the (i, j)-th entry of W . The following upper bounds on the partial derivatives are
straightforward: ∣∣∣∣ ∂

∂
√
nWij

f(W , z)

∣∣∣∣ ≤ βM2
Θn

−3/2,∣∣∣∣ ∂∂zi f(W , z)

∣∣∣∣ ≤ 2rMΘn
−1.

(D.69)
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Hence by Gaussian concentration, we obtain

EW ,z [(ϕ(t)− EW ,z[ϕ(t)])] ≤ C1n
−1. (D.70)

Here and below, we denote by Ci constants that depend only on β,MΘ, r and and are bounded over compacts.
Finally, we show that EW ,z[ϕ(t)], as a function of θ, concentrates around its expectation. This follows

from the estimate: ∣∣∣∣ ∂∂θiEW ,z[ϕ(t)]

∣∣∣∣ ≤ C2n
−1.

Using Efron Stein’s inequality, we get

Eθ[(EW ,z[ϕ(t)]− EW ,z,θ[ϕ(t)])
2] ≤ C3n

−1. (D.71)

The proof of Lemma D.7.3 follows from Eq. (D.70) and Eq. (D.71).

We now conclude the proof of Lemma D.4.2. We have

ψ′(r) =
∂ϕ

∂
√
t
(t)

∣∣∣∣
t=r2

=
√
tµt
(
Ut(θ)

)∣∣∣
t=r2

. (D.72)

Therefore letting t± :=
√
r ± ε, Eq. (D.63) and Eq. (D.68) imply

E
[
|µt
(
Ut(θ)

)
− E[µt

(
Ut(θ)

)
]|
]
≤ 1

n
E[µt+(⟨θ1,θ2⟩)− µt−(⟨θ1,θ2⟩)] +

C4

ε
n−1/2 + 6M2

Θε. (D.73)

Proposition D.4.1 implies that the mapping t 7→ γ∗(β, t) is locally Lipschitz continuous on (0,∞). Since
limn→∞ E [µt(⟨θ1,θ2⟩/n)] = γ∗(β, t), this yields

lim
n→∞

1

n
E[µt+(⟨θ1,θ2⟩)− µt−(⟨θ1,θ2⟩)] ≤ δ(ε) , (D.74)

for some δ(ε) ↓ 0 as ε→ 0.
Since ε is arbitrary, we obtain

lim
n→∞

E
[
|µt
(
Ut(θ)

)
− E[µt

(
Ut(θ)

)
]|
]
= 0 . (D.75)

The proof is completed by showing that, for all 0 < t1 < t2

lim
n→∞

∫ t2

t1

E
[
Varµt

(Ut(θ))
]
dt = 0 . (D.76)

We notice that

d

dt
µt(Ut(θ)) =

n

2
Varµt

(Ut(θ))−
1

2nt3/2
µt(⟨z,θ⟩) , (D.77)
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and therefore∫ t2

t1

E
[
Varµt(Ut(θ))

]
dt =

2

n

{
Eµ(Ut2(θ))− Eµ(Ut1(θ))

}
+

1

n2

∫ t2

t1

1

t3/2
Eµt(⟨z,θ⟩) dt . (D.78)

On the other hand, using Eq. (D.63) and ∥θ∥∞ ≤MΘ, we get∣∣∣Eµt(Ut(θ))∣∣∣ ≤M2
Θ , (D.79)∣∣∣Eµt(⟨z,θ⟩)∣∣∣ ≤MΘ

√
nE∥z∥2 ≤ 2MΘn . (D.80)

Substituting above, we get ∫ t2

t1

E
[
Varµt(Ut(θ))

]
dt ≤ 4

n
M2

Θ +
2

n2
MΘ

t2 − t1
t
3/2
1

, (D.81)

which implies the claim (D.76).
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